
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đáp án A.
Ta có y ' = 2 x 2 − 2 m x − 6 m 2 + 2.
Để hàm số có 2 điểm cực trị
⇔ y ' = 0 có 2 nghiệm phân biệt.
⇔ Δ ' = m 2 + 4 3 m 2 − 1 > 0 ⇔ 13 m 2 − 4 > 0 ⇔ m > 2 13 m < − 2 13 .
Khi đó, theo Viet ta có
x 1 + x 2 = m x 1 x 2 = 1 − 3 m 2 .
Mà x 1 x 2 + 2 x 1 + x 2 = 1 nên suy ra
1 − 3 m 2 + 2 m = 1 ⇔ 3 m 2 − 2 m ⇔ m = 0 m = 2 3 .
Kết hợp với điều kiện, ta được
m = 2 3 = a b ⇒ a = 2 b = 3 → S = 2 2 + 3 2 = 13.

hoành độ giao điểm là nghiệm của pt
\(x^3-3mx^2+3\left(2m-1\right)x+1=2mx-4m+3\Leftrightarrow x^3-3mx^2+4mx-3x-2+4m=0\Leftrightarrow x^3-3x-2-m\left(3x^2-4x+4\right)=0\)
giải hệ pt ta có \(C_m\) luôn đi qua điểm A là nghiệm của hệ pt sau
\(\begin{cases}3x^2-4x+4=0\\x^3-3x-2=0\end{cases}\)
ta đc điều phải cm

vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)
vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3
ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2
vậy ta tìm đc a và b