![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta dùng hằng đẳng thức: \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\) (1)
Thay a+b=7 và ab=12 vào (1) ta được:
\(\left(a-b\right)^2=7^2-4.12=49-48=1\)
Vậy:.....
b) Ta dùng hằng đẳng thức: \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\) (2)
Thay a-b=6 và ab = 3 vào (2) ta được:
\(\left(a+b\right)^2=6^2+4.3=36+12=48\)
Vậy:....
c) Dùng hằng đẳng thức: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\) (3)
Thay ab = 6 và a+b = -5 vào (3) ta được:
\(a^3+b^3=\left(-5\right)^3-3.6\left(-5\right)=-125-90=-215\)
Vậy......
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a6 + b6 = (a2 + b2)(a4 - a2 b2 + b4) = [(a + b)2 - 2ab][(a2 + b2)2 - 3a2 b2] = [(a + b)2 - 2ab]{[(a + b)2 - 2ab]2- 3a2 b2}
Thế số vô là ra
![](https://rs.olm.vn/images/avt/0.png?1311)
1. Ta có: \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)
Theo đề ta có: \(\left(a-b\right)^2=\left(a+b\right)^2-4ab=5^2-4.2=17\)
Vậy \(\left(a-b\right)^2=17\)
2. Ta có: \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)
Theo đề ta có: \(\left(a+b\right)^2=\left(a-b\right)^2+4ab=6^2+4.16=100\)
\(\Rightarrow\left[{}\begin{matrix}a+b=10\\a+b=-10\end{matrix}\right.\)
Vậy \(a+b=10\) hoặc \(a+b=-10\)
3. \(a^2+b^2+1=ab+a+b\)
\(\Rightarrow2\left(a^2+b^2+1\right)=2\left(ab+a+b\right)\)
\(\Rightarrow2a^2+2b^2+2=2ab+2a+2b\)
\(\Rightarrow2a^2+2b^2+2-2ab-2a-2b=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\) (1)
Vì \(\left(a-b\right)^2\ge0\) \(\forall a;b\)
\(\left(a-1\right)^2\ge0\) \(\forall a\)
\(\left(b-1\right)^2\ge0\) \(\forall b\)
\(\Rightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\) \(\forall a;b\) (2)
Từ (1)(2) \(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-1\right)^2=0\\\left(b-1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\a-1=0\\b-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=b\\a=1\\b=1\end{matrix}\right.\Rightarrow a=b=1\)
Vậy.... đpcm
Chúc bạn học tốt ahihi
Bài 1 : \(a+b=5\)
\(\Leftrightarrow\left(a+b\right)^2=25\)
\(\Leftrightarrow a^2+b^2+2ab=25\)
\(\Leftrightarrow a^2+b^2+2.2=25\)
\(\Leftrightarrow a^2+b^2=21\)
\(\Leftrightarrow a^2+b^2-2ab=21-2ab\)
\(\Leftrightarrow\left(a-b\right)^2=21-2.2\)
\(\Leftrightarrow\left(a-b\right)^2=17\)
Bài 2 :
\(a-b=6\)
\(\Leftrightarrow\left(a-b\right)^2=36\)
\(\Leftrightarrow a^2-2ab+b^2=36\)
\(\Leftrightarrow a^2+b^2-2.16=36\)
\(\Leftrightarrow a^2+b^2=36+32=68\)
\(\Leftrightarrow a^2+b^2+2ab=68+2ab\)
\(\Leftrightarrow\left(a+b\right)^2=68+2.16=100\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b=10\\a+b=-10\end{matrix}\right.\)
Bài 3 :
\(a^2+b^2+1=ab+a+b\)
\(\Leftrightarrow2\left(a^2+b^2+1\right)=2\left(ab+a+b\right)\)
\(\Leftrightarrow2a^2+2b^2+2=2ab+2a+2b\)
\(\Leftrightarrow2a^2+2b^2+2-2ab-2a-2b=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\)
Do \(\left(a-b\right)^2\ge0;\left(a-1\right)^2\ge0;\left(b-1\right)^2\ge0\)
\(\Rightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)
Dấu " = " xảy ra
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\a-1=0\\b-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=b\\a=1\\b=1\end{matrix}\right.\)
Vậy \(a=b=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(a-b=6\) \(\Rightarrow a=b+6\)
\(\Rightarrow ab=\left(b+6\right).b=16\)
\(\Leftrightarrow b^2+6b=16\)
\(\Leftrightarrow b^2+6b-16=0\)
\(\Leftrightarrow\left(b-2\right)\left(b+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}b-2=0\\b+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}b=2\\b=-8\end{matrix}\right.\)
Mà \(a=b+6\Leftrightarrow\left[{}\begin{matrix}a=2+6=8\\a=-8+6=-2\end{matrix}\right.\)\(\)
\(\Rightarrow\left[{}\begin{matrix}a+b=8+2=10\\a+b=-2+-8=-10\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\frac{ab}{6+a-c}+\frac{bc}{6+b-a}+\frac{ca}{6+c-b}\)
\(=\frac{ab}{2a+b}+\frac{bc}{2b+c}+\frac{ca}{2c+a}\)
Áp dụng BĐT \(\frac{1}{a+b+c}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) với a,b>0
\(VT\le\frac{1}{9}\left(\frac{ab}{a}+\frac{ab}{a}+\frac{ab}{b}\right)+\frac{1}{9}\left(\frac{bc}{b}+\frac{bc}{b}+\frac{bc}{c}\right)+\frac{1}{9}\left(\frac{ca}{c}+\frac{ca}{c}+\frac{ca}{a}\right)=\frac{1}{3}\left(a+b+c\right)=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a.b=6 => a=\(\frac{6}{b}\)
Ta có: a+b=5, thay a= \(\frac{6}{b}\)ta có:
\(\frac{6}{b}+b=5\)( giải tìm nghiệm ta được b=2)
a+2=5=>a=3
Vậy: a6+b6=36+26=793
@phynit
Ta có: a-b=6 => a=b+6
=>a.b = (b+6).b =16
<=> b2 + 6b = 16
<=> b2 + 6b - 16 =0
<=>( b-2 ) . ( b+8) =0
<=> b =2 hoặc b=8
=> a=8 hoặc a = -2
=> a + b =10 hoặc bằng a + b =-10