Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a=\sqrt[3]{\frac{23+\sqrt{513}}{4}};b=\sqrt[3]{\frac{23-\sqrt{513}}{4}}\Rightarrow a^3+b^3=\frac{23}{2}\)
\(ab=1\) và \(3x+1=a+b\)
Suy ra : \(\left(3x+1\right)^3-27x^3+27x^2+9+1=27\left(x^3+x^2+1\right)+3\left(3x+1\right)-29\)
hay : \(A=\frac{\left(3x+1\right)^3-3\left(3x+1\right)+29}{27}=\frac{\left(a+b\right)^3-3\left(a+b\right)+29}{27}\)
\(=\frac{a^3+b^3+3ab\left(a+b\right)-3\left(a+b\right)+29}{27}=\frac{\frac{23}{2}+29}{27}=\frac{3}{2}\)
Vậy giá trị của biểu thức đã cho là \(A=\frac{3}{2}\)
\(f'\left(x\right).f\left(x\right)=x^4+x^2\)
Lấy nguyên hàm 2 vế:
\(\int f\left(x\right).f'\left(x\right)dx=\int\left(x^4+x^2\right)dx\)
\(\Leftrightarrow\int f\left(x\right)d\left(f\left(x\right)\right)=\int\left(x^4+x^2\right)dx\)
\(\Leftrightarrow\frac{f^2\left(x\right)}{2}=\frac{1}{5}x^5+\frac{1}{3}x^3+C\)
\(\Rightarrow f^2\left(x\right)=\frac{2}{5}x^5+\frac{2}{3}x^3+C\)
\(x=0\Rightarrow f^2\left(0\right)=C\Rightarrow C=4\Rightarrow f^2\left(x\right)=\frac{2}{5}x^5+\frac{2}{3}x^3+4\)
\(\Rightarrow f^2\left(2\right)=\frac{2}{5}.2^5+\frac{2}{3}x^3+4=\frac{332}{15}\)
\(I_1=\int cos\left(\frac{\pi x}{2}\right)dx-\int\frac{2}{6x+5}dx=\frac{2}{\pi}\int cos\left(\frac{\pi x}{2}\right)d\left(\frac{\pi x}{2}\right)-\frac{1}{3}\int\frac{d\left(6x+5\right)}{6x+5}\)
\(=\frac{2}{\pi}sin\left(\frac{\pi x}{2}\right)-\frac{1}{3}ln\left|6x+5\right|+C\)
\(I_2=-\frac{1}{2}\int\left(4-x^4\right)^{\frac{1}{2}}d\left(4-x^4\right)=-\frac{1}{2}.\frac{\left(4-x^4\right)^{\frac{3}{2}}}{\frac{3}{2}}+C=\frac{-\sqrt{\left(4-x^4\right)^3}}{3}+C\)
\(I_3=2\int e^{\frac{1}{2}\left(4+x^2\right)}d\left(\frac{1}{2}\left(4+x^2\right)\right)=2e^{\frac{1}{2}\left(4+x^2\right)}+C=2\sqrt{e^{4+x^2}}+C\)
\(I_4=-\frac{1}{2}\int\left(1-x^2\right)^{\frac{1}{3}}d\left(1-x^2\right)=-\frac{1}{2}.\frac{\left(1-x^2\right)^{\frac{4}{3}}}{\frac{4}{3}}+C=-\frac{3}{8}\sqrt[3]{\left(1-x^2\right)^4}+C\)
\(I_5=\int e^{sinx}d\left(sinx\right)=e^{sinx}+C\)
\(I_6=\int\frac{d\left(1+sinx\right)}{1+sinx}=ln\left(1+sinx\right)+C\)
\(I_7=\int\left(x+1\right)\sqrt{x-1}dx\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow dx=2tdt\)
\(\Rightarrow I_7=\int\left(t^2+2\right).t.2t.dt=\int\left(2t^4+4t^2\right)dt=\frac{2}{5}t^5+\frac{4}{3}t^3+C\)
\(=\frac{2}{5}\sqrt{\left(1-x\right)^5}+\frac{4}{3}\sqrt{\left(1-x\right)^3}+C\)
\(I_8=\int\left(2x+1\right)^{20}dx\)
Đặt \(2x+1=t\Rightarrow2dx=dt\Rightarrow dx=\frac{1}{2}dt\)
\(\Rightarrow I_8=\frac{1}{2}\int t^{20}dt=\frac{1}{42}t^{21}+C=\frac{1}{42}\left(2x+1\right)^{21}+C\)
\(I_9=-3\int\left(1-x^3\right)^{-\frac{1}{2}}d\left(1-x^3\right)=-3.\frac{\left(1-x^3\right)^{\frac{1}{2}}}{\frac{1}{2}}+C=-6\sqrt{1-x^3}+C\)
\(I_{10}=\int\frac{x}{\sqrt{2x+3}}dx\)
Đặt \(\sqrt{2x+3}=t\Rightarrow x=\frac{1}{2}t^2-\frac{3}{2}\Rightarrow dx=t.dt\)
\(\Rightarrow I_{10}=\int\frac{\frac{1}{2}t^2-\frac{3}{2}}{t}.t.dt=\frac{1}{2}\int\left(t^2-3\right)dt=\frac{2}{3}t^3-\frac{3}{2}t+C\)
\(=\frac{2}{3}\sqrt{\left(2x+3\right)^3}-\frac{3}{2}\sqrt{2x+3}+C\)
Cho \(\log_ab=3;\log_ac=-2\)
1. Với \(x=a^3b^2\sqrt{c}\Rightarrow\log_ax=\log_a\left(a^3b^2\sqrt{c}\right)=\log_aa^3+\log_ab^2+\log_ac^{\frac{1}{2}}\)
\(=3+2.3+\frac{1}{2}\left(-2\right)=8\)
2. Với \(x=\frac{a^4\sqrt[3]{b}}{c^3}\) \(\Rightarrow\log_a\frac{a^4\sqrt[3]{b}}{c^2}=\log_aa^4+\log_ab^{\frac{1}{3}}+\log_ac^3\)
\(=4+\frac{1}{3}\log_ab+3\log_ac=4+\frac{1}{3}.3+3\left(-2\right)=-1\)
3. Với \(x=\log_a\frac{a^2\sqrt[3]{b}c}{\sqrt[3]{a\sqrt{c}}b^3}\Rightarrow\log_a\frac{a^2b^{\frac{1}{3}}c}{a^{\frac{1}{3}}b^3c^{\frac{1}{6}}}=\log_a\frac{a^{\frac{5}{3}}c^{\frac{5}{6}}}{b^{\frac{8}{3}}}=\log_aa^{\frac{5}{3}}-\log_ab^{\frac{8}{3}}+\log_ac^{\frac{3}{2}}\)
\(=\frac{5}{3}-\frac{8}{3}\log_ab+\frac{5}{6}\log_ac=\frac{5}{3}-\frac{8}{3}3+\frac{5}{6}\left(-2\right)=-8\)
\(\int\left(x^3+x\right)dx=\frac{x^4}{4}+\frac{x^2}{2}+C\)
Chọn D
(2x + 2-x)2 = 4x + 4-x + 2 = 23 + 2 = 25
⇒ 2x + 2-x = 5