Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Thay x=-1; y=1 và z=-2 vào B, ta được:
\(B=\dfrac{3\cdot\left(-1\right)\cdot1\cdot\left(-2\right)-2\cdot\left(-2\right)^2}{\left(-1\right)^2+1}=\dfrac{6-8}{1+1}=\dfrac{-2}{2}=-1\)
vì x và y là hai đại lượng tỉ lệ nghịch
ta có: X1 x Y1=X2 x Y2
hay
\(2x=3y\text{⇒}\dfrac{x}{3}=\dfrac{y}{2}\text{⇒}\dfrac{x}{15}=\dfrac{y}{10}\)
\(2y=5z\text{⇒}\dfrac{y}{5}=\dfrac{z}{2}\text{⇒}\dfrac{y}{10}=\dfrac{z}{4}\)
⇒\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{4}=\dfrac{\left|x+y+z\right|}{\left|15+10+4\right|}=\dfrac{29}{29}=1\)
⇒x=15;y=10;z=4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/-4=y/-7=z/3
=-2x+y+5z/-2.(-4)+(-7)+5.3
= 2x-3y-6z/2.(-4)-3.(-7)-6.3
=> -2x+y+5z/16=2x-3y-6z/-5
=> -2x+y+5z/2x-3y-6z
=16/-5
Vậy A = 16/-5
Đặt x/-4=y/-7=z/3=k
=>x=-4k,y=-7k,z=3k(*)
Thay (*) vào A ta có:
A=(-2x+y+5z)/(2x-3y-6z)
=(8k-7k+15k)/(-8k+21k-18k)
=16k/-5k
=16/-5
Vậy A=-16/5
Đặt \(\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=-4k\\y=-7k\\z=3k\end{matrix}\right.\)
\(\Rightarrow A=\dfrac{-2.\left(-4k\right)+\left(-7k\right)+5.3k}{-4k-3.\left(-7k\right)-6.3k}=\dfrac{16k}{-1k}=-16\)
Ta có:
\(2x=3y=5z\Rightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{57}{\frac{19}{30}}=90\)
\(\Rightarrow x=45\)
\(\Rightarrow y=30\)
\(\Rightarrow z=18\)
Vậy............................
\(2x=3y=5z\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)(Cùng chia cho 30 )
Áp dụng t/c dãy tsbn \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
\(\Rightarrow\hept{\begin{cases}x=5.15=75\\y=5.10=50\\z=5.6=30\end{cases}}\)
Ta có 2x=3y=5z
\(\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
\(\frac{x}{15}=5\Rightarrow x=75\)
\(\frac{y}{10}=5\Rightarrow y=50\)
\(\frac{z}{6}=5\Rightarrow z=30\)
Vậy x = 75 ; y = 50 ; z = 30
a) Ta có : \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}=\frac{2x-2+3y-6-z+3}{9}\)
\(=\frac{50-5}{9}=\frac{45}{9}=5\)
Từ đó suy ra x = 11,y = 17,z = 23
b)
a) Do x và y là hai đại lượng tỉ lệ thuận và x1,x2 là hai giá trị khác nhau của x;y1,y2 là hai giá trị tương ứng của y nên :
\(\frac{y_1}{x_1}=\frac{y_2}{x_2}\Rightarrow x_1=\frac{y_1x_2}{y_2}=\frac{-\frac{3}{4}\cdot2}{\frac{1}{7}}=-\frac{21}{2}\)
b) Do x và y là hai đại lượng tỉ lệ thuận và x1,x2 là hai giá trị khác nhau của x;y1,y2 là hai giá trị tương ứng của y nên :
\(\frac{y_1}{y_2}=\frac{x_1}{x_2}=\frac{y_1-x_1}{y_2-x_2}\Rightarrow\frac{y_1}{3}=\frac{x_1}{-4}=\frac{y_1-x_1}{3-\left(-4\right)}=-\frac{2}{7}\)
Vậy \(x_1=-4\cdot\frac{-2}{7}=\frac{8}{7};y_1=3\cdot\frac{-2}{7}=\frac{-6}{7}\)
c) Tự làm nhé
Từ \(2x=3y=5z\Rightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{57}{\frac{19}{30}}=90\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{2}}=90\Rightarrow x=90\cdot\frac{1}{2}=45\\\frac{y}{\frac{1}{3}}=90\Rightarrow y=90\cdot\frac{1}{3}=30\\\frac{z}{\frac{1}{5}}=90\Rightarrow z=90\cdot\frac{1}{5}=18\end{cases}}\)
Khi đó \(x^2-y^2+z^2=45^2-30^2+18^2=1449\)