
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


210.(22)10...(210)10
=(2.22...210)10
=(21+2+3+4+5+6+7+8+9+10)10
=(255)10
=2550


Lưu ý:dấu * là dấu nhân nhé.
Bài làm
Ta có:(2*2^2*2^3*....*2^10)^10
=(2^1+2+3+4+5+6+7+8+9+10)^10
=(2^55)^10
=2^550
Vậy n bằng 550.

a) ta có : \(A=1+2+2^2+2^3+...+2^{2017}\)
\(\Rightarrow2A=2\left(1+2+2^2+2^3+...+2^{2017}\right)\)
\(\Leftrightarrow2A=2+2^2+2^3+2^4...+2^{2018}\) \(\Rightarrow2A-A=A=\left(2+2^2+2^3+2^4+...+2^{2018}\right)-\left(1+2+2^2+2^3+...+2^{2017}\right)\)\(\Leftrightarrow\) \(A=2^{2018}-1\)
\(\Rightarrow2\left(A+1\right)=2\left(2^{2018}-1+1\right)=2\left(2^{2018}\right)=2^{2019}=2^{n+1}\)
\(\Rightarrow2019=n+1\Leftrightarrow n=2019-1=2018\) vậy \(n=2018\)
b) ta có : \(A=2+2^2+2^3+...+2^{2017}\)
\(\Rightarrow2A=2\left(2+2^2+2^3+...+2^{2017}\right)\)
\(\Leftrightarrow2A=2^2+2^3+2^4...+2^{2018}\) \(\Rightarrow2A-A=A=\left(2^2+2^3+2^4+...+2^{2018}\right)-\left(2+2^2+2^3+...+2^{2017}\right)\)\(\Leftrightarrow\) \(A=2^{2018}-2\)
\(\Rightarrow2A+4=2\left(2^{2018}-2\right)+4=2^{2019}-4+4=2^{2019}=2^{n+1}\)
\(\Rightarrow2019=n+1\Leftrightarrow n=2019-1=2018\) vậy \(n=2018\)

(28:4)x4n=45
=>28:22x4n=45
=>26x4n=45
=>4n=45:26
=>4n=(22)5:26
=>4n=210:26
=>4n=24
=>4n=16
=>n=2

a) Ta có :
m = 2 . 33 . 72 ; n = 32 . 5 . 112
=> BCNN( m , n ) = 2 . 33 . 5 . 72 . 112 = 1 600 830
b) m = 24 . 3 . 55 ; n = 23 . 32 . 72
=> BCNN( m , n ) = 24 . 32 . 55 . 72 = 22 050 000

1/
Với $n$ nguyên để $\frac{n^2+2n-6}{n-2}$ là số nguyên thì:
$n^2+2n-6\vdots n-2$
$\Rightarrow n(n-2)+4(n-2)+2\vdots n-2$
$\Rightarrow 2\vdots n-2$
$\Rightarrow n-2\in \left\{\pm 1; \pm 2\right\}$
$\Rightarrow n\in \left\{3; 1; 4; 0\right\}$
Bạn xem lại đề câu 2. Với điều kiện đề cho thì không phù hợp với lớp 6 bạn nhé.

a) \(15+2^n=31\)
\(2^n=16\Rightarrow n=4\)
b) \(2.2^n+4.2^n=6.2^5\)
\(2^n\left(2+4\right)=6.2^5\)
\(2^n.6=6.2^5\Rightarrow n=5\)
c) \(32^n:16^n=1024\)
\(\left(2^5\right)^n:\left(2^4\right)^n=2^{10}\)
\(2^{5n}:2^{4n}=2^{10}\)
\(2^n=2^{10}\Rightarrow n=10\)
d) \(5^n+5^{n+2}=650\)
\(5^n+5^n.25=650\)
\(5^n\left(1+25\right)=650\)
\(5^n.26=650\)
\(5^n=25\Rightarrow n=2\)
e) \(3^n+5.3^{n+1}=432\)
\(3^n+5.3^n.3=432\)
\(3^n\left(1+15\right)=432\)
\(3^n.16=432\)
\(3^n=27\Rightarrow n=3\)
\(\left(2^5:2^2\right):2^n=2^3\)
\(2^3:2^n=2^3\)
\(2^n=2^3:2^3\)
\(2^n=2^0\)
\(\Rightarrow n=0\)
(25 : 22 ) : 2n = 23
23 : 2n = 23
2n = 20
=> n = 0