Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: aba+b=bcb+c=aca+c⇒a+bab=b+cbc=a+cacaba+b=bcb+c=aca+c⇒a+bab=b+cbc=a+cac
⇒aab+bab=bbc+cbc=aac+cac⇒aab+bab=bbc+cbc=aac+cac
⇒1b+1a=1c+1b=1c+1a⇒1b+1a=1c+1b=1c+1a
⇒1a=1b=1c⇒a=b=c⇒1a=1b=1c⇒a=b=c
⇒M=ab+bc+caa2+b2+c2= a2+b2+c2a2+b2+c2=1
Áp dụng t/c dtsbn:
\(\dfrac{1}{a+b}=\dfrac{2}{b+c}=\dfrac{3}{c+a}=\dfrac{1+2+3}{2\left(a+b+c\right)}=\dfrac{6}{2\left(a+b+c\right)}=\dfrac{3}{a+b+c}\)
\(\Rightarrow\left\{{}\begin{matrix}3a+3b=a+b+c\\3b+3c=2a+2b+2c\\3a+3c=3a+3b+3c\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}c=2a\\b=0\end{matrix}\right.\)
\(Q=\dfrac{a+2021b+c}{a+2022b+c}=\dfrac{a+2a}{a+2a}=1\)
\(\frac{1}{a+b}=\frac{2}{b+c}=\frac{3}{c+a}=\frac{1+2+3}{2\left(a+b+c\right)}=\frac{3}{a+b+c}.\)
\(\Rightarrow\frac{3}{c+a}=\frac{3}{a+b+c}\Rightarrow c+a=a+b+c\Rightarrow b=0\)
\(\Rightarrow Q=\frac{a+2021b+c}{a+2022b+c}=\frac{a+c}{a+c}=1\)
\(\frac{1}{a+b}=\frac{1}{b+c}=\frac{1}{c+c}\Rightarrow\frac{1}{a+b}=\frac{1}{b+c}\Rightarrow a+b=b+c\)
\(\Rightarrow a=c\left(1\right)\)
\(\frac{1}{b+c}=\frac{1}{c+c}\Rightarrow b+c=c+c\Rightarrow c=b\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow a=b=c\)
\(Q=\frac{a+2021b+c}{a+2022b+c}=\frac{a+2021a+a}{a+2022a+a}\)
\(Q=\frac{a.\left(1+2021+1\right)}{a.\left(1+2022+1\right)}=\frac{2023}{2024}\)
Vậy, \(Q=\frac{2023}{2024}\)