K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2018

\(P=3^2+6^2+9^2+....+30^2\)

    \(=\left(3.1\right)^2+\left(3.2\right)^2+\left(3.3\right)^2+....+\left(3.10\right)^2\)

      \(=3^2.1^{^2}+3^2.2^2+3^2.3^2+....+3^2.10^2\)

       \(=3^2.\left(1^2+2^2+3^2+...+10^2\right)\)

        \(=9.385\)

          \(=3465\)

Vậy P = 3465

24 tháng 6 2018

1^2 + 2^2 + 3^2 + ... + 10^2 = 385

Co :

 P = 3^2 + 6^2 + 9^2 + ... + 30^2

 P = 3^2( 1^2 + 2^2 + 3^2 + ... + 10^2 )

 P = 9 . 385 

 P = 3465

3 tháng 7 2017

\(P=3^2+6^2+...+30^2\)

\(=1.3^2+2^2.3^2+...+3^2.10^2\)

\(=3^2\left(1+2^2+...+10^2\right)\)

\(=9.385=3465\)

Vậy P = 3465

24 tháng 10 2017

3465

15 tháng 9 2016

bạn bấm máy tính là ra kq cho nhanh

15 tháng 9 2016

Ta có    P=32+62+92+...30

                   = (3x1)2+ (3+2)+ (3x3)2+.....+ (3x10)2

               = 32x12+ 32x 22+ 32x3+......+ 3x 102

                    =  3(12+  22+ 3+......+ 102)

                     =  3x 385

                   = 9 x 385

                  =3465

 P=32+62+92+...30= 3465

Câu 6: D

Câu 7: A

Câu 6: Giá trị của biểu thức (x- 8) x (x + 3) - (x - 2) x (x + 5) tại x=-3là:

A.-4  B.16  C. -10    D. 10 

Câu 7:Giá trị của biểu thức 6 + (x- 3) x (x3 + 2) - x8 - 2xtại x= -1/3 là:

A. -1/9  B. 1/9  C.9    D.-9

18 tháng 9 2016

Ta có: 12 + 22 + 3+ ...... + 10= 385

=> 32.(12 + 22 + 3+ ...... + 102 )  = 32.385

=> 3+ 62 + 92 + ..... + 302 = 9.385

=> 3+ 62 + 92 + ..... + 302 = 3465

18 tháng 9 2016

Vay S= 3465

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

30 tháng 6 2021

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

30 tháng 6 2021

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)

a) Ta có: \(P=\left(\dfrac{3}{x+1}+\dfrac{x-9}{x^2-1}+\dfrac{2}{1-x}\right):\dfrac{x-3}{x^2-1}\)

\(=\left(\dfrac{3\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\dfrac{x-9}{\left(x+1\right)\left(x-1\right)}-\dfrac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{x-3}{x^2-1}\)

\(=\dfrac{3x-3+x-9-2x-2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{x-3}\)

\(=\dfrac{2x-14}{x-3}\)

b) Ta có: \(x^2-9=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(loại\right)\\x=-3\left(nhận\right)\end{matrix}\right.\)

Thay x=-3 vào biểu thức \(P=\dfrac{2x-14}{x-3}\), ta được:

\(P=\dfrac{2\cdot\left(-3\right)-14}{-3-3}=\dfrac{-20}{-6}=\dfrac{10}{3}\)

Vậy: Khi \(x^2-9=0\) thì \(P=\dfrac{10}{3}\)

c) Để P nguyên thì \(2x-14⋮x-3\)

\(\Leftrightarrow2x-6-8⋮x-3\)

mà \(2x-6⋮x-3\)

nên \(-8⋮x-3\)

\(\Leftrightarrow x-3\inƯ\left(-8\right)\)

\(\Leftrightarrow x-3\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

\(\Leftrightarrow x\in\left\{4;2;5;1;7;-1;11;-5\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{4;2;5;7;11;-5\right\}\)

Vậy: Để P nguyên thì \(x\in\left\{4;2;5;7;11;-5\right\}\)

21 tháng 12 2021

Answer:

a) \(\frac{5x}{2x+2}+1=\frac{6}{x+1}\)

\(\Rightarrow\frac{5x}{2\left(x+1\right)}+\frac{2\left(x+1\right)}{2\left(x+1\right)}=\frac{12}{2\left(x+1\right)}\)

\(\Rightarrow5x+2x+2-12=0\)

\(\Rightarrow7x-10=0\)

\(\Rightarrow x=\frac{10}{7}\)

b) \(\frac{x^2-6}{x}=x+\frac{3}{2}\left(ĐK:x\ne0\right)\)

\(\Rightarrow x^2-6=x^2+\frac{3}{2}x\)

\(\Rightarrow\frac{3}{2}x=-6\)

\(\Rightarrow x=-4\)

c) \(\frac{3x-2}{4}\ge\frac{3x+3}{6}\)

\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\ge0\)

\(\Rightarrow9x-6-6x-6\ge0\)

\(\Rightarrow3x-12\ge0\)

\(\Rightarrow x\ge4\)

d) \(\left(x+1\right)^2< \left(x-1\right)^2\)

\(\Rightarrow x^2+2x+1< x^2-2x+1\)

\(\Rightarrow4x< 0\)

\(\Rightarrow x< 0\)

e) \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}\le\frac{x^2}{7}-\frac{2x-3}{5}\)

\(\Rightarrow\frac{2x-3+5\left(x^2-2x\right)}{35}\le\frac{5x^2-7\left(2x-3\right)}{35}\)

\(\Rightarrow2x-3+5x^2-10x\le5x^2-14x+21\)

\(\Rightarrow6x\le24\)

\(\Rightarrow x\le4\)

f) \(\frac{3x-2}{4}\le\frac{3x+3}{6}\)

\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\le0\)

\(\Rightarrow9x-6-6x-6\le0\)

\(\Rightarrow3x\le12\)

\(\Rightarrow x\le4\)