\(^{x^2+4x+4}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2017

BBieesn đổi hằng đẳng thức 

x²+4x+4

=x²+2.2x+2²

=(x+2)²

11 tháng 9 2017

Ta có:

\(x^2+4x+4\)

\(=x^2+2.2x+2^2\)

\(=\left(x+2\right)^2\)

\(S=1^3+2^3+3^3+...+n^3=\left(1+2+3+...+n\right)^2\)

\(=\left[\dfrac{n\left(n+1\right)}{2}\right]^2=\dfrac{n^2\cdot\left(n+1\right)^2}{4}\)

4 tháng 7 2019

4x4 + 20x2 + 25

= ( 2x2)2 + 2.2.x2.5 + 52

= ( 2x2 + 5 )2

4 tháng 7 2019

TL:

\(4x^4+20x^2+25\)  

=\(\left(2x^2\right)^2+2.2.x^2.5+25\)

\(=\left(2x^2+5\right)^2\) 

hc tốt

\(4-4x^2+x^4=\left(2-x^2\right)^2\)

20 tháng 8
ChatGPT said:

Để hoàn thiện hằng đẳng thức sau:

\(- 4 x^{2} + x^{4} = \left(\right. \hdots - x^{2} \left.\right) \left(\right. \ldots \textrm{ } \left.\right)\)

Chúng ta sẽ sử dụng phân tích đa thức bậc 4 dưới dạng nhân hai nhị thức.

  1. Để \(x^{4}\) có hệ số là 1, một trong các yếu tố sẽ phải là \(x^{2}\).
  2. Để hệ số của \(x^{2}\) trong biểu thức bằng \(- 4 x^{2}\), ta cần hai số có tích bằng \(- 4\) và tổng bằng 0 (vì không có hạng tử \(x\) đơn).

Tìm các số \(a\) và \(b\) sao cho:

\(a \cdot b = - 4 \text{v} \overset{ˋ}{\text{a}} a + b = 0\)

Điều này có thể xảy ra khi \(a = - 2\) và \(b = 2\).

Vậy, ta có thể viết biểu thức dưới dạng:

\(- 4 x^{2} + x^{4} = \left(\right. x^{2} - 2 \left.\right) \left(\right. x^{2} + 2 \left.\right)\)

Đây là hằng đẳng thức hoàn chỉnh, trong đó \(x^{4}\) và \(- 4 x^{2}\) được tạo thành từ phép nhân của hai nhị thức \(x^{2} - 2\)và \(x^{2} + 2\).

5 tháng 7 2016

a) \(x^2+4x+3=\left(x^2+4x+4\right)-1=\left(x+2\right)^2-1^2=\left(x+1\right)\left(x+3\right)\) (mình sửa lại)

b) \(x^2+8x-9=\left(x^2+8x+16\right)-25=\left(x+4\right)^2-5^2=\left(x-1\right)\left(x+9\right)\)

c) \(3x^2+6x-9=3\left[\left(x^2+2x+1\right)-4\right]=3\left[\left(x+1\right)^2-2^2\right]=3\left(x-1\right)\left(x+3\right)\)

d) \(2x^2+x-3=2x^2-4x+2+5x-5=2\left(x^2-2x+1\right)+5\left(x-1\right)=2\left(x-1\right)^2+5\left(x-1\right)=\left(x-1\right)\left(2x+3\right)\)

 

6 tháng 7 2016

tik nhé Toán lớp 8

10 tháng 11 2017

1. Ta có: \(\dfrac{x^7+x^6+x^5+x^4+x^3+x^2+x+1}{x^2-1}\)

\(=\dfrac{x^6\left(x+1\right)+x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{\left(x+1\right)\left(x^6+x^4+x^2+1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{\left(x^6+x^4+x^2+1\right)}{\left(x-1\right)}\)

\(=\dfrac{x^4\left(x^2+1\right)+x^2+1}{x-1}\)

\(=\dfrac{\left(x^2+1\right)\left(x^4+1\right)}{x-1}\)

2.Ta có: \(\dfrac{x^2+y^2+z^2-2xy+2xz-2xz}{x^2-2xy+y^2-z^2}\)

\(=\dfrac{\left(x-y+z\right)^2}{\left(x-y\right)^2-z^2}=\dfrac{\left(x-y+z\right)\left(x-y+z\right)}{\left(x-y-z\right)\left(x-y+z\right)}=\dfrac{x-y+z}{x-y-z}\)

_Chúc bạn học tốt_

11 tháng 11 2017

\(\text{1) }\dfrac{x^7+x^6+x^5+x^4+x^3+x^2+x+1}{x^2-1}\\ =\dfrac{\left(x^7+x^6\right)+\left(x^5+x^4\right)+\left(x^3+x^2\right)+\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x^6\left(x+1\right)+x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{\left(x+1\right)\left(x^6+x^4+x^2+1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x^6+x^4+x^2+1}{\left(x-1\right)}\\ \)

\(\text{2) }\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\\ =\dfrac{\left(x^2-2xy+y^2\right)+\left(2xz-2yz\right)+z^2}{\left(x^2-2xy+y^2\right)-z^2}\\ =\dfrac{\left(x-y\right)^2+2z\left(x-y\right)+z^2}{\left(x-y\right)^2-z^2}\\ =\dfrac{\left(x-y+z\right)^2}{\left(x-y+z\right)\left(x-y-z\right)}\\ =\dfrac{x-y+z}{x-y-z}\)

6 tháng 7 2016

a) 

áp dụng hằng đẳng thức hiệu 2 bình phương 

\(\left(x-2\right)^2-\left(4\right)^2=\left(x-2-4\right)\left(x-2+4\right)=\left(x-6\right)\left(x-2\right)\)

b) 

áp dụng HDT : bình phương của 1 hiệu

\(\left(x-2y\right)^2-2.2.\left(x-2y\right)+2^2=\left(x-2y-2\right)^2=\left(x-2y-2\right)\left(x-2y-2\right)\)

c) 

áp dụng HDT : bình phương của 1 hiệu

\(\left(a^2+1\right)^2-2.3.\left(a^2+1\right)+3^2=\left(a^2+1-3\right)^2=\left(a^2-2\right)^2=\left(a^2-2\right)\left(a^2-2\right)\)

d) áp dụng HDT : bình phương của 1 tồng

\(\left(x+y\right)^2+2.\frac{1}{2}.\left(x+y\right).x+\left(\frac{1}{2}x\right)^2=\left(x+y+\frac{1}{2}x\right)^2=\left(\frac{3}{2}x+y\right)\left(\frac{3}{2}x+y\right)\)

Chúc bạn học tốt nha!!! 

T I C K ủng hộ nha

5 tháng 10 2020

a) 16x2 - ( x2 + 4 )2

= ( 4x )2 - ( x2 + 4 )2

= [ 4x - ( x2 + 4 ) ][ 4x + ( x2 + 4 ) ]

= ( -x2 + 4x - 4 )( x2 + 4x + 4 )

= [ -( x2 - 4x + 4 ) ]( x + 2 )2

= [ -( x - 2 )2 ]( x + 2 )2

b) ( x + y )3 + ( x - y )3

= [ ( x + y ) + ( x - y ) ][ ( x + y )2 - ( x + y )( x - y ) + ( x - y )2 ]

= ( x + y + x - y )[ x2 + 2xy + y2 - ( x2 - y2 ) + x2 - 2xy + y2 ]

= 2x( 2x2 + 2y2 - x2 + y2

= 2x( x2 + 3y2 )

10 tháng 10 2018

a) 9  -(x-y)2

= 32 - (x-y)2

= (3-x+y).(3+x-y)

b) (x2 +4)2 - 16x2

= (x2+4)2 - (4x)2

= (x2 + 4 -4x).(x2 + 4 +4x)

10 tháng 10 2018

      \(9-\left(x-y\right)^2\)

\(=3^2-\left(x-y\right)^2\)

\(=\left(3-x+y\right)\left(3+x-y\right)\)

      \(\left(x^2+4\right)^2-16x^2\)

\(=\left(x^2+4\right)^2-\left(4x\right)^2\)

\(=\left(x^2-4x+4\right)\left(x^2+4x+4\right)\)

\(=\left(x-2\right)^2\left(x+2\right)^2\)