Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thông thường thì ko có cách biến đổi cụ thể, phải tùy thuộc vào hiệu này âm hay dương mới biến đổi được, ví dụ nếu biết \(x_1-x_2\ge0\) thì ta có thể biến nó thành \(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)
Ptr có: `\Delta' = b'^2-ac=(-1)^2-(-4)=5 > 0`
`=>` Ptr có `2` nghiệm pb
`=>` Áp dụng Vi-ét: `{(x_1+x_2=[-b]/a=2),(x_1.x_2=c/a=-4):}`
Có: `T=x_1(x_1-2x_2)+x_2(x_2-2x_1)`
`=>T=x_1 ^2 - 2x_1.x_2+x_2 ^2 - 2x_1.x_2`
`=>T=(x_1+x_2)^2-6x_1.x_2`
`=>T=2^2-6(-4)=28`
Phương trình x 2 + (4m + 1)x + 2(m – 4) = 0 có a = 1 ≠ 0 và
∆ = ( 4 m + 1 ) 2 – 8 ( m – 4 ) = 16 m 2 + 33 > 0 ; ∀ m
Nên phương trình luôn có hai nghiệm x 1 ; x 2
Theo hệ thức Vi-ét ta có x 1 + x 2 = − 4 m − 1 x 1 . x 2 = 2 n − 8
Xét
A = x 1 - x 2 2 = x 1 + x 2 2 - 4 x 1 x 2 = 16 m 2 + 33 ≥ 33
Dấu “=” xảy ra khi m = 0
Vậy m = 0 là giá trị cần tìm
Đáp án: B
\(x_1^2-x_2^2=\left(x_1-x_2\right)\left(x_1+x_2\right)\)
\(=\pm\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\cdot\left(x_1+x_2\right)\)
\(x_1^3-x_2^3\)
\(=\left(x_1-x_2\right)^3+3x_1x_2\left(x_1-x_2\right)\)
\(=\pm\left[\left(x_1+x_2\right)^2-4x_1x_2\right]^3+3\cdot x_1x_2\cdot\pm\left(\left(x_1+x_2\right)^2-4x_1x_2\right)\)
\(\left(m-1\right)x^2-2mx+m-4=0\)
Theo Vi - ét , ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{2m}{m-1}\\x_1x_2=\dfrac{c}{a}=\dfrac{m-4}{m-1}\end{matrix}\right.\)
Ta có :
\(A=3\left(x_1+x_2\right)+2x_1x_2-8\)
\(=3\left(\dfrac{2m}{m-1}\right)+2\left(\dfrac{m-4}{m-1}\right)-8\)
\(=\dfrac{6m}{m-1}+\dfrac{2m-8}{m-1}-8\)
\(=\dfrac{6m+2m-8}{m-1}-8\)
\(=\dfrac{8m-8}{m-1}-8\)
\(=\dfrac{8\left(m-1\right)}{m-1}-8\)
\(=8-8\)
\(=0\)
Vậy biểu thức A không phụ thuộc giá trị m