K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(4\cdot sin3x\cdot sin2x\cdot cosx\)

\(=4\cdot sin3x\cdot cosx\cdot sin2x\)

\(=4\cdot\dfrac{1}{2}\left[sin\left(3x+x\right)+sin\left(3x-2x\right)\right]\cdot sin2x\)

\(=2\cdot\left[sin4x+sinx\right]\cdot sin2x\)

\(=2\cdot sin2x\cdot sin4x+2\cdot sin2x\cdot sinx\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

\(\begin{array}{l}1.\,\,\,\,\cos a.\cos b = \frac{1}{2}\left[ {\cos \left( {a + b} \right) + \cos \left( {a - b} \right)} \right] \Leftrightarrow 2\cos a.\cos b = \cos \left( {a + b} \right) + \cos \left( {a - b} \right)\\ \Leftrightarrow 2\cos \frac{{u + v}}{2}.\cos \frac{{u - v}}{2} = \cos u + \cos v\\2.\,\,\,\,\sin a.\sin b =  - \frac{1}{2}.\left[ {\cos \left( {a + b} \right) - \cos \left( {a - b} \right)} \right] \Leftrightarrow  - 2.\sin a.\sin b = \cos \left( {a + b} \right) - \cos \left( {a - b} \right)\\ \Leftrightarrow  - 2.\sin \frac{{u + v}}{2}.\sin \frac{{u - v}}{2} = \cos u - \cos v\\3.\,\,\,\,\sin a.\cos b = \frac{1}{2}\left[ {\sin \left( {a + b} \right) + \sin \left( {a - b} \right)} \right] \Leftrightarrow 2\sin a.\cos b = \sin \left( {a + b} \right) + \sin \left( {a - b} \right)\\ \Leftrightarrow 2\sin \frac{{u + v}}{2}.\cos \frac{{u - v}}{2} = \sin u + \sin v\\4.\,\,\,\,\sin \left( {a + b} \right) - \sin \left( {a - b} \right) = \sin a.\cos b + \cos a.\sin b - \sin a.\cos b + \cos a.\sin b = 2\cos a.\sin b\\ \Leftrightarrow \sin u - \sin v = 2.\cos \frac{{u + v}}{2}.\sin \frac{{u - v}}{2}\end{array}\)

6 tháng 2 2017

2 tháng 6 2017

cos3x=sin(\(\dfrac{\pi}{2}\)-3x)

\(\Leftrightarrow\)sin(\(\dfrac{\pi}{2}\)-3x)=sin2x

\(\Leftrightarrow\)2x=\(\dfrac{\pi}{2}\)-3x+k2\(\pi\) or 2x=3x-\(\dfrac{\pi}{2}\)+k2\(\pi\)

\(\Leftrightarrow\)x=...

B=cos^2x-sin^2x+cosx-sinx

=(cosx-sinx)(cosx+sinx)+(cosx-sinx)

=(cosx-sinx)(cosx+sinx+1)

12 tháng 1 2017

a) Các hằng đẳng thức lượng giác cơ bản:

sin2α + cos2α = 1

1 + tan2α = 1/(cos2α); α ≠ π/2 + kπ, k ∈ Z

1 + cot2α = 1/(sin2α); α ≠ kπ, k ∈ Z

tan⁡α.cot⁡α = 1; α ≠ kπ/2, k ∈ Z

b) Công thức cộng:

cos⁡(a - b) = cos⁡a cos⁡b + sin⁡a sin⁡b

cos⁡(a + b) = cos⁡a cos⁡b - sin⁡a sin⁡b

sin⁡(a - b) = sin⁡a cos⁡b - cos⁡a sin⁡b

sin(a + b) = sina.cosb + cosa.sinb

Giải bài tập Toán 11 | Giải Toán lớp 11

c) Công thức nhân đôi:

sin⁡2α = 2 sin⁡α cos⁡α

cos⁡2α = cos2α - sin2α = 2cos2α - 1 = 1 - 2sin2α

Giải bài tập Toán 11 | Giải Toán lớp 11

d) Công thức biến đổi tích thành tổng:

cos⁡ a cos⁡b = 1/2 [cos⁡(a - b) + cos⁡(a + b) ]

sin⁡a sin⁡b = 1/2 [cos⁡(a - b) - cos⁡(a + b) ]

sin⁡a cos⁡b = 1/2 [sin⁡(a - b) + sin⁡(a + b) ]

Công thức biến đổi tổng thành tích:

Giải bài tập Toán 11 | Giải Toán lớp 11