K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2016

Mình đã làm bài này bằng cách tìm a rồi thế vào M, mong bạn nào có cách giải hay hơn, gọn hơn xin giúp mình. Cảm ơn các bạn!!!

10 tháng 1 2018

a) \(x^6+x^4+x^2y^2+y^4-y^6\)

\(=x^6-y^6+x^4+x^2y^2+y^4\)

\(=\left[\left(x^3\right)^2-\left(y^3\right)^2\right]+x^4+2x^2y^2+y^4-x^2y^2\)

\(=\left(x^3-y^3\right)\left(x^3+y^3\right)+\left(x^2+y^2\right)^2-x^2y^2\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x^2+y^2\right)^2-x^2y^2\)

\(=\left(x-y\right)\left(x+y\right)\left[\left(x^2+y^2\right)^2-\left(xy\right)^2\right]+\left(x^2+y^2\right)^2-x^2y^2\)

\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)^2-\left(x-y\right)\left(x+y\right)x^2y^2+\left(x^2+y^2\right)^2-x^2y^2\)

\(=\left(x^2+y^2\right)^2\left[\left(x-y\right)\left(x+y\right)+1\right]-x^2y^2\left[\left(x-y\right)\left(x+y\right)+1\right]\)

\(=\left[\left(x-y\right)\left(x+y\right)+1\right]\left[\left(x^2+y^2\right)^2-\left(xy\right)^2\right]\)

\(=\left(x^2-y^2+1\right)\left(x^2-xy+y^2\right)\left(x^2+xy+y^2\right)\)

10 tháng 1 2018

c) \(\left(2a+b\right)^3+6a+3b-4\)

\(=\left(2a+b\right)^3+3\left(2a+b\right)-4\)

Đặt 2a + b = t.

Ta có: \(t^3+3t-4\)

\(=t^3-t^2+t^2-t+4t-4\)

\(=t^2\left(t-1\right)+t\left(t-1\right)+4\left(t-1\right)\)

\(=\left(t-1\right)\left(t^2+t+4\right)\)

Thay t = 2a + b vào biểu thức:

\(\left(t-1\right)\left(t^2+t+4\right)=\left(2a+b-1\right)\left(4a^2+4ab+b^2+2a+b+4\right)\)

22 tháng 6 2017

1. (a - b + c - d).(a - b + c - d)
= (a - b + c - d)2

Câu 1 vậy là gọn nhé

2.
a) x2 - 10xy + 25y2
= x- 2x5y + (5y)2
= (x - 5y)2
b) 16a4 + 8a2b3 + b6
= (4a2)2 + 2.4a2.b3 + (b3)2
= (4a2 + b3)2
c) a4 - 1
= (a2)2 - 1
= (a2 - 1)(a2 + 1)
= (a - 1)(a + 1)(a2 + 1)
d) 16a4 - 81b4
= (4a2)2 - (9b2)2
= (4a2 - 9b2)(4a2 + 9b2)
= [(2a)2 - (3b)2](4a2 + 9b2)
= (2a - 3b)(2a + 3b)(4a2 + 9b2)
e) (a4 - 2a2b + b2) - b4
= [(a2)2 - 2a2b + b2] - (b2)2
= (a2 - b)2 - (b2)2
= (a2 - b - b2)(a2 - b + b2)
= [(a - b)(a + b) - b](a2 - b + b2)
f) 81x4 - (b2 - 2b + 1)
= (9x2)2 - (b - 1)2
= (9x2 - b + 1)(9x2 + b - 1)
 

22 tháng 9 2019

1, -3x4y + 6x3y - 3x2y

= -3x2y (x2 - 2x + 1)

= -3x2y(x - 1)2

2, 12x2 - 12xy + 3y2

= 3(4x2 - 4xy + y2)

= 3(2x - y)2

3, 20x4y2 - 20x3y3 + 5x2y4

= 5x2y2(4x2 - 4xy + y2)

= 5x2y2(2x - y)2

4, 16x5y2 - 16x4y3 + 4x3y4

= 4x3y2(4x2 - 4xy + y2)

= 4x3y2(2x - y)2

5, -12x4y + 12x3y2 - 3x2y3

= -3x2y(4x2 - 4xy + y2)

= -3x2y(2x - y)2

6, (a2 + 4)2 - 16a2

= (a2 + 4 - 4a)(a2 + 4 - 4a)

7, (a2 + 9)2 - 36a2

= (a2 + 32)2 - (6a)2

= (a2 + 32 - 6a)(a2 + 32 + 6a)

= (a2 - 6a + 9)(a2 + 6a + 9)

8, (a2 + 4b2)2 - 16a2b2

= (a2 + 4b2 - 4ab)(a2 + 4b2 + 4ab)

= (a2 - 4ab + 4b2)(a2 + 4ab + 4b2)

= (a - 2b)2(a + 2b)2

= (a2 - 4b2)4

Câu này có sai thì bạn thông cảm nhá!!!

9, 36a2 - (a2 + 9)2

= (6a)2 - (a2 + 9)2

=- (a2 - 6a + 9)(a2 + 6a + 9)

= -(a - 3)2(a + 3)2

= -(a2 - 9)4

Câu 10 giống câu 8 bạn nhé

AH
Akai Haruma
Giáo viên
25 tháng 7 2021

Lời giải:

a.

\(-16a^4b^6-24a^5b^5-9a^6b^4=-[(4a^2b^3)^2+2.(4a^2b^3).(3a^3b^2)+(3a^3b^2)^2]\)

\(=-(4a^2b^3+3a^3b^2)^2=-[a^2b^2(4b+3a)]^2\)

\(=-a^4b^4(3a+4b)^2\)

b.

$x^3-6x^2y+12xy^2-8x^3$

$=x^3-3.x^2.2y+3.x(2y)^2-(2y)^3=(x-2y)^3$

c.

$x^3+\frac{3}{2}x^2+\frac{3}{4}x+\frac{1}{8}$

$=x^3+3.x^2.\frac{1}{2}+3.x.\frac{1}{2^2}+(\frac{1}{2})^3$

$=(x+\frac{1}{2})^3$

a) Ta có: \(-16a^4b^6-24a^5b^5-9a^6b^4\)

\(=-a^4b^4\left(16b^2+24ab+9a^2\right)\)

\(=-a^4b^4\cdot\left(4b+3a\right)^2\)

b) Ta có: \(x^3-6x^2y+12xy^2-8y^3\)

\(=x^3-3\cdot x^2\cdot2y+3\cdot x\cdot\left(2y\right)^2-\left(2y\right)^3\)

\(=\left(x-2y\right)^3\)

c) Ta có: \(x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}\)

\(=x^3+3\cdot x^2\cdot\dfrac{1}{2}+3\cdot x\cdot\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3\)

\(=\left(x+\dfrac{1}{2}\right)^3\)

1 tháng 9 2019

b) \(\left(\frac{x}{2}\right)^2\)+2.\(\frac{x}{2}\).2y+\(\left(2y\right)^2\)

=\(\left(\frac{x}{2}+2y\right)^2\)

5 tháng 9 2019

a) \(27x^3-0,001\)

\(=\left(3x\right)^3-\left(\frac{1}{10}\right)^3\)

\(=\left(3x-\frac{1}{10}\right)\left(9x^2+\frac{3}{10}x+\frac{1}{100}\right)\)

b) \(a^4-2a^2+1\)

\(=\left(a^2\right)^2-2a^2+1\)

\(=\left(a^2-1\right)^2\)

c)\(\left(a^2+4\right)^2-16a^2\) 

\(=\left(a^2+4\right)^2-\left(4a\right)^2\)

\(=\left(a^2+4-4a\right)\left(a^2+4+4a\right)\)

\(=\left(a-2\right)^2\left(a+2\right)^2\)