Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{97}{48^2.49^2}+\frac{99}{49^2.50^2}\)
\(\Leftrightarrow\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{97}{2304.2401}+\frac{99}{2401.2500}\)
\(\Leftrightarrow\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{2304}-\frac{1}{2401}+\frac{1}{2401}-\frac{1}{2500}\)
\(\Leftrightarrow\frac{1}{1}-\frac{1}{2500}=\frac{2499}{2500}< 1\left(đpcm\right)\)
Đặt A
Ta có công thức :
\(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)
Dựa vào công thức, ta có
\(A=\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+......+\frac{1}{48}-\frac{1}{50}\right)\)
\(A=\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{50}\right)=\frac{5}{2}.\left(\frac{12}{25}\right)=\frac{6}{5}\)
Ai thấy đúng thì ủng hộ nha !!!
a, \(\frac{5}{2.4}+\frac{5}{4.6}+\frac{5}{6.8}+...+\frac{5}{48.50}\)
=\(\frac{5}{2}\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{48.50}\right)\)
=\(\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{48}-\frac{1}{50}\right)\)
=\(\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{50}\right)\)=\(\frac{5}{2}.\frac{12}{25}\)=\(\frac{6}{5}\)
Bài này mình chắc 100%, 1 đúng nha vì ghi cực khổ lắm:
1) Ta có: \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}...+\frac{50-49}{49.50}\)
\(=\frac{2}{1.2}-\frac{1}{1.2}+\frac{3}{2.3}-\frac{2}{2.3}+...+\frac{50}{49.50}-\frac{49}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}<1\)
2) Tương tự: \(S=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\frac{1}{2}-\frac{1}{50}=\frac{24}{50}\)
\(B=\frac{\left(2^4.3\right)^3.\left(2.5^2\right)^5}{\left(2^6\right)^2.\left(5^3\right)^2.\left(2.3.5\right)^3}\)
\(B=\frac{2^{12}.3^3.2^5.5^{10}}{2^{12}.5^6.2^3.3^3.5^3}\)
\(B=\frac{2^{12}.3^3.2^3.2^2.5^9.5}{2^{12}.5^9.2^3.3^3}\)
\(B=2^2.5=20\)
Vay B = 20