\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}......\frac{9999}{10000}\)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2020

a) \(B=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{302\cdot305}\)

\(B=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{302\cdot305}\right)\)

\(B=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{302}-\frac{1}{305}\right)\)

\(B=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{305}\right)=\frac{1}{3}\cdot\frac{303}{610}=\frac{101}{610}\)

b) \(C=\frac{6}{1\cdot4}+\frac{6}{4\cdot7}+....+\frac{6}{202\cdot205}\)

\(C=2\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{202\cdot205}\right)=2\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{202}-\frac{1}{205}\right)\)

\(=2\left(1-\frac{1}{205}\right)=2\cdot\frac{204}{205}=\frac{408}{205}\)

c) \(D=\frac{5^2}{1\cdot6}+\frac{5^2}{6\cdot11}+...+\frac{5^2}{266\cdot271}\)

\(D=5\left(\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+...+\frac{5}{266\cdot271}\right)\)

\(D=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{266}-\frac{1}{271}\right)=5\left(1-\frac{1}{271}\right)=5\cdot\frac{270}{271}=\frac{1350}{271}\)

d) \(E=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{5}{16}\cdot...\cdot\frac{9999}{10000}=\frac{3\cdot8\cdot15\cdot...\cdot9999}{4\cdot9\cdot16\cdot...\cdot10000}=\frac{3}{10000}\)

e) \(F=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\)

\(F=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{2500}\right)\)

\(F=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{2499}{2500}=\frac{3\cdot8\cdot15\cdot...\cdot2499}{4\cdot9\cdot16\cdot...\cdot2500}=\frac{3}{2500}\)

25 tháng 8 2020

a. \(B=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{302.305}\)

\(\Rightarrow3B=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{302.305}\)

\(\Rightarrow3B=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{302}-\frac{1}{305}\)

\(\Rightarrow3B=\frac{1}{2}-\frac{1}{305}\)

\(\Rightarrow3B=\frac{303}{610}\)

\(\Rightarrow B=\frac{101}{610}\)

b. \(C=\frac{6}{1.4}+\frac{6}{4.7}+...+\frac{6}{202.205}\)

\(\Rightarrow\frac{1}{2}C=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{202.205}\)

\(\Rightarrow\frac{1}{2}C=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{202}-\frac{1}{205}\)

\(\Rightarrow\frac{1}{2}C=1-\frac{1}{205}\)

\(\Rightarrow\frac{1}{2}C=\frac{204}{205}\)

\(\Rightarrow C=\frac{408}{205}\)

c. \(D=\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{266.271}\)

\(\Rightarrow\frac{1}{5}D=\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{266.271}\)

\(\Rightarrow\frac{1}{5}D=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{266}-\frac{1}{271}\)

\(\Rightarrow\frac{1}{5}D=1-\frac{1}{271}\)

\(\Rightarrow\frac{1}{5}D=\frac{270}{271}\)

\(\Rightarrow D=\frac{1350}{271}\)

6 tháng 4 2019

=\(\frac{3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot\frac{3\cdot5}{4\cdot4}\cdot...\cdot\frac{49\cdot51}{50\cdot50}\)

=\(\frac{\left(2\cdot3\cdot...\cdot49\right)\cdot\left(3\cdot4\cdot...\cdot51\right)}{\left(2\cdot3\cdot4\cdot...\cdot50\right)\left(2\cdot3\cdot4\cdot...\cdot50\right)}\)

=\(\frac{51}{50\cdot2}=\frac{51}{100}\)

6 tháng 4 2019

sai đè rồi bạn Hoàng Nguyễn Văn.ko hề có dấu 3 chấm.Chỉ là\(\frac{3}{4}\).\(\frac{8}{9}\).\(\frac{15}{16}\).\(\frac{2499}{2500}\)thôi

22 tháng 7 2020

a) \(22\frac{1}{2}\cdot\frac{7}{9}+50\%-1,25\)

\(=\frac{45}{2}\cdot\frac{7}{9}+\frac{50}{100}-\frac{125}{100}\)

\(=\frac{5}{2}\cdot\frac{7}{1}+\frac{1}{2}-\frac{5}{4}\)

\(=\frac{35}{2}+\frac{1}{2}-\frac{5}{4}=18-\frac{5}{4}=\frac{67}{4}\)

b) \(1,4\cdot\frac{15}{49}-\left(\frac{4}{5}+\frac{2}{3}\right):2\frac{1}{5}\)

\(=\frac{7}{5}\cdot\frac{15}{49}-\frac{22}{15}:\frac{11}{15}\)

\(=\frac{1}{1}\cdot\frac{3}{7}-\frac{22}{15}\cdot\frac{15}{11}\)

\(=\frac{3}{7}-2=\frac{3-14}{7}=\frac{-11}{7}\)

c) \(\left(-\frac{1}{2}\right)^2-\frac{7}{16}:\frac{7}{4}+75\%\)

\(=\frac{1}{4}-\frac{7}{16}\cdot\frac{4}{7}+\frac{75}{100}\)

\(=\frac{1}{4}-\frac{1}{4}+\frac{3}{4}=\frac{3}{4}\)

Bài 2  Bạn tự làm nhé

22 tháng 7 2020

1.a,\(22\frac{1}{2}.\frac{7}{9}+50\%-1,25\)

\(=\frac{45}{2}.\frac{7}{9}+\frac{1}{2}-\frac{5}{4}\)

\(=\frac{35}{2}+\frac{1}{2}-\frac{5}{4}\)

\(=\frac{67}{4}\)

b,Các phép tính khác làm tương tự

Đổi các số ra hết thành phân số,có ngoặc thì lm ngoặc trc,Xoq đến nhân chia trước dồi mới cộng trừ

c,tương tự

2.

a,\(1\frac{3}{5}+\frac{7}{12}\div x=\frac{-9}{4}\)

\(\frac{8}{5}+\frac{7}{12}\div x=\frac{-9}{4}\)

\(\frac{7}{12}\div x=\frac{-77}{20}\)

Đến đây dễ bạn tự làm

b,\(\left(2\frac{4}{5}.x+50\right)\div\frac{2}{3}=-51\)

\(\left(\frac{14}{5}x+50\right)\div\frac{2}{3}=-51\)

\(\frac{14}{5}x+50=-34\)

\(\frac{14}{5}x=-84\)

Tự làm tiếp

c,\(\left|\frac{3}{4}.x-\frac{1}{2}\right|=\frac{1}{4}\)\(\Rightarrow\left|\frac{3}{4}x-\frac{1}{2}\right|=\varnothing\)

25 tháng 2 2019

Câu hỏi của Lưu Nho - Toán lớp 6 - Học toán với OnlineMath

25 tháng 2 2019

Đặt \(B=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot....\cdot\frac{10000}{10001}\)

\(\Rightarrow A< B\)

\(\Rightarrow A^2< AB\)

\(\Rightarrow A^2< \left(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot....\cdot\frac{9999}{10000}\right)\left(\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot....\cdot\frac{10000}{10001}\right)\)

\(=\frac{1}{10001}< \frac{1}{10000}=0.0001\)

\(\Rightarrow A^2< 0.0001\)

\(\Rightarrow A< 0.1\)

30 tháng 4 2019

Bài 1 :

\(x\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\right)=1\)

\(\Rightarrow x\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)=1\)

\(\Rightarrow x\left(\frac{1}{2}-\frac{1}{50}\right)=1\)

\(\Rightarrow x\cdot\frac{24}{50}=1\)

\(\Rightarrow x=1\div\frac{24}{50}=\frac{25}{12}\)

                            #Louis

30 tháng 4 2019

\(\frac{1}{2.3}x+\frac{1}{3.4}x+\frac{1}{4.5}x+...+\frac{1}{49.50}x=1\)

\(\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\right)x=1\)

\(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\right)x=1\)

\(\left(\frac{1}{2}-\frac{1}{50}\right)x=1\)

\(\frac{12}{25}x=1\)

Đến đây dễ rồi :)))

Bn tự tính típ nha

30 tháng 3 2019

\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.\frac{2499}{2500}=\frac{3.8.15.2499}{4.9.16.2500}\)\(=\frac{14994}{24000}\)

(Thực hiện rút gọn)

# Học tốt #

\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.\frac{2499}{2500}=\frac{3.8.15.2499}{4.9.16.2500}=\frac{3.15.2499}{4.9.2.2500}\)

Tự rút gọn tiếp đi

21 tháng 3 2019

\(a)\frac{x}{8}=\frac{-30}{y}=\frac{-48}{32}\)

Rút gọn : \(\frac{-48}{32}=\frac{(-48):16}{32:16}=\frac{-3}{2}\)

* Ta có : \(\frac{x}{8}=\frac{-3}{2}\)

\(\Rightarrow x\cdot2=-3\cdot8\)

\(\Rightarrow x=\frac{-3\cdot8}{2}=-12\)

* Ta có : \(\frac{-30}{y}=\frac{-3}{2}\)

\(\Rightarrow-30\cdot2=-3\cdot y\)

\(\Rightarrow y=\frac{-30\cdot2}{-3}=20\)

Mấy bài kia làm tương tự

28 tháng 4 2019

\(\frac{-30}{y}=\frac{-48}{32}\)

\(\Rightarrow\)\(-30.32=-48y\)

\(\Rightarrow\)\(-960=-48y\)

\(\Rightarrow\)\(y=20\)

\(thay\)\(y=20\)vào đẳng thức ta được

\(\frac{x}{8}=\frac{-3}{2}\)

\(\Rightarrow\)\(2x=-24\)

\(\Rightarrow\)\(x=-12\)

vậy x = - 12,  y = 20