Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: x\(\ne\) 0;4
Ta có: Q= \(\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{2}{\sqrt{x}}\right)\)
= \(\frac{4\sqrt{x}\cdot\left(2-\sqrt{x}\right)+8x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}:\frac{\sqrt{x}-1-2\cdot\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
=\(\frac{8\sqrt{x}+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\cdot\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}\)= \(\frac{4\sqrt{x}\cdot\left(2+\sqrt{x}\right)}{2+\sqrt{x}}\cdot\frac{-\sqrt{x}}{3-\sqrt{x}}\)=\(\frac{-4}{3-\sqrt{x}}\)=\(\frac{4}{\sqrt{x}-3}\)
b) Q=-1 => \(\frac{4}{\sqrt{x}-3}=-1\)
<=> \(4=3-\sqrt{x}\)
<=> \(\sqrt{x}=-1\) (vô lí)
Vậy ko tìm được x.
a, A\(=\left(\frac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2+4\sqrt{x}\left(x-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\frac{x-1}{\sqrt{x}}\) ĐK x>0 ;\(x\ne1;x\ne-1\)
\(A=\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1+4x\sqrt{x}-4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}}{x-1}\)
\(A=\frac{4x\sqrt{x}}{x-1}.\frac{\sqrt{x}}{x-1}\)=\(\frac{4x^2}{\left(x-1\right)^2}\)
b, Để A =2 \(\Rightarrow\frac{4x^2}{\left(x-1\right)^2}=2\Rightarrow4x^2=2\left(x-1\right)^2\)
<=> \(4x^2=2x^2-4x+2\)
<=> \(2x^2+4x-2=0\)
<=> \(x^2+2x-1=0\)
\(\Delta=1^2-1.\left(-1\right)\) = 2
=> \(\orbr{\begin{cases}x_1=-1-\sqrt{2}\left(loại\right)\\x_2=-1+\sqrt{2}\left(nhận\right)\end{cases}}\)
Vậy x=\(-1+\sqrt{2}\)thì A =2
c, Thay x =\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)=2
=>A = \(\frac{4.2^2}{\left(2-1\right)^2}=16\)
Vậy A=16 thì x=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)