Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A< \frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2007.2009}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2007}-\frac{1}{2009}=\frac{1}{3}-\frac{1}{2009}=\frac{2006}{6027}< \frac{2006}{4016}=\frac{1003}{2008}\)Vây:.......
Chứng minh rằng :
\(\frac{2}{3^2}\)+\(\frac{2}{5^2}\)+...+\(\frac{2}{2007^2}\)< \(\frac{1003}{2008}\)
Ta thấy: \(\frac{2}{3^2}=\frac{2}{3.3}< \frac{2}{2.4}=\frac{1}{2}-\frac{1}{4}\)
\(\frac{2}{5.5}< \frac{2}{4.6}=\frac{1}{4}-\frac{1}{6}\)\(;...;\frac{2}{2007.2007}< \frac{2}{2006.2008}=\frac{1}{2006}-\frac{1}{2008}\)
\(\Rightarrow\frac{2}{3^2}+\frac{2}{5^2}+...+\frac{2}{2007^2}< \frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2006}-\frac{1}{2008}\)
Ta có:\(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2006}-\frac{1}{2008}=\frac{1}{2}-\frac{1}{2008}=\frac{1004-1}{2008}=\frac{1003}{2008}\)
\(\Rightarrow\frac{2}{3^2}+\frac{2}{5^2}+...+\frac{2}{2007^2}< \frac{1003}{2008}\)(đpcm)
K mình nè!
\(A=\frac{2}{3^2}+\frac{2}{5^2}+.......+\frac{2}{2007^2}\)
\(A=2.\left(\frac{1}{3.3}+\frac{1}{5.5}+......+\frac{1}{2007.2007}\right)\)
\(A< 2.\left(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2006.2007}\right)\)
\(A< 2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{2006}-\frac{1}{2007}\right)\)
\(A< 2.\left(\frac{1}{2}-\frac{1}{2007}\right)\)
\(A< 2.\frac{2005}{4014}\)
\(A< \frac{2005}{2007}\)
Ta thấy
2/(3x3) < 2/(2x4) = 1/2 – 1/4
2/(5x5) < 2/(4x6) = 1/4 – 1/6
2/(7x7) < 2/(6x8) = 1/6 – 1/8
………
2/(2007x2007) < 2/(2006x2008) = 1/2006 – 1/12008
Nên:
A = 2/3^2 +2/5^2+2/7^2 +.....+2/2007^2 < 2/(2x4) + 2/(4x6) + …. + 2/(2006x2008) =
1/2 – 1/4 + 1/4 – 1/6 + 1/6 – 1/8 + … + 1/2006 – 1/2008 =
1/2 – 1/2008 = 1003/2008
Vậy: .....
Chứng minh \(A=\frac{2}{3^2}+\frac{2}{5^2}+\frac{2}{7^2}+...+\frac{2}{2007^2}<\frac{1003}{2008}\)
Ta thấy: 32>32-1=(3-1).(3+1)=2.4
52>52-1=(5-1).(5+1)=4.6
72>72-1=(7-1).(7+1)=6.8
…………………………
20072>20072-1=(2007-1).(2007+1)=2006.2008
=> \(\frac{2}{3^2}<\frac{2}{2.4}\)
\(\frac{2}{5^2}<\frac{2}{4.6}\)
\(\frac{2}{7^2}<\frac{2}{6.8}\)
.................
\(\frac{2}{2007^2}<\frac{2}{2006.2008}\)
=> \(A=\frac{2}{3^2}+\frac{2}{5^2}+\frac{2}{7^2}+...+\frac{2}{2007^2}<\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2006.2008}\)
=> \(A<\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2006}-\frac{1}{2008}\)
=> \(A<\frac{1}{2}-\frac{1}{2008}\)
=> \(A<\frac{1003}{2008}\)
=>ĐPCM
bạn Lê Quốc Vượng cũng chơi bang bang hả có những tank gì rồi .Tớ có tank Triệu Vân, joker,tiên
cá, doraemon, quan công, nhện, pea,pega
Bạn đổi phân số thành / rồi tìm trên Google có đầy bài này rồi.
a, VT < 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/2007.2008
= 1-1/2+1/2-1/3+1/3-1/4+....+1/2007-1/2008 = 1-1/2008 < 1
=> ĐPCM