Bên cạnh con đường trước khi vào thành phố người ta xây một ngọn tháp đèn lộng lẫy. Ngọn tháp h...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2018

Đáp án A

Phương pháp:

Trải 4 mặt của hình chóp ra mặt phẳng và tìm điều kiện để A M + M N + N P + P Q  là nhỏ nhất.

Cách giải:

Ta “xếp” 4 mặt của hình chóp lên một mặt phẳng, được như hình bên:

Như hình vẽ ta tháy, để tiết kiệm dây nhất thì các đoạn AM, MN, NP, PQ phải tạo thành một đoạn thẳng AQ.

Lúc này, xét Δ S A Q có:

A S M = M S N = N S P = P S Q = 15 °

S A = 600 m , S Q = 300 m

⇒ k = A M + M N N P + P Q = A N N Q = S A S Q = 2

(Vì A N N Q = S A S Q do tính chất của đường phân giác SN).

28 tháng 7 2017

Đáp án B

Gọi F’,H’ là điểm đối xứng của F,H qua SO

 ( O là tâm của đáy)

⇒ EF'=EF, FH=F'H'

Gọi I,J là điểm đối xứng của A,F’ qua SB

⇒ EF ' = EJ , F ' H ' = H ' J


A E + EF'+F'H'+H'K=AE+EJ + H ' J + H ' K ≥ AJ + K J

Gọi  R là điểm đối xứng của A qua SI  ⇒ AJ = J R

⇒ AJ + K J = J R + K J ≥ K R

Vậy để AE+EF’+F’H’+H’K nhỏ nhất bằng KR thì

H ' J + H ' K = K J A E + EJ = AJ = J R

k = H F + H K E A + EF = H ' F ' + H ' K E A + EF' = K J J R = S K S A = 1 2

8 tháng 12 2017

Đáp án là D

23 tháng 2 2018

Đáp án A

Câu 1: (2,5 điểm)    Cho biểu thức:a) Rút gọn A.b) Tính giá trị của biểu thức A tại x thỏa mãn: 2x2 + x = 0c) Tìm x để A = 1/2d) Tìm x nguyên để A nguyên dương.Câu 2: (1điểm)a) Biểu diễn tập nghiệm của mỗi bất phương trình sau trên trục số: x ≥ -1 ;  x < 3.b) Cho a < b, so sánh  – 3a +1 với – 3b + 1.HD:          a < b => -3a > -3bCâu 3: (1,5 điểm) Một người đi xe đạp từ A đến B với vận...
Đọc tiếp

Câu 1: (2,5 đim)    Cho biểu thức:

2016-04-27_171121

a) Rút gọn A.

b) Tính giá trị của biểu thức A tại x thỏa mãn: 2x2 + x = 0

c) Tìm x để A = 1/2
d) Tìm x nguyên để A nguyên dương.

Câu 2: (1điểm)

a) Biểu diễn tập nghiệm của mỗi bất phương trình sau trên trục số: x ≥ -1 ;  x < 3.

b) Cho a < b, so sánh  – 3a +1 với – 3b + 1.

HD:          a < b => -3a > -3b

Câu 3: (1,5 điểm) Một người đi xe đạp từ A đến B với vận tốc trung bình 15km/h. Lúc về, người đó chỉ đi với vận tốc trung bình 12km/h, nên thời gian về nhiều hơn thời gian đi là 45 phút. Tính độ dài quãng đường AB (bằng kilômet).

HD: Đổi 45’ = ¾ h, quãng đường AB = S => S = vt hay S/15 = S/12+3/4

2016-04-27_171454

Câu 4:  (1,0 điểm) Cho tam giác ABC có AD là phân giác trong của góc A. Tìm x trong hình vẽ sau với độ dài cho sẵn trong hình. 

2016-04-27_171602

 Câu 5: (1,5 điểm)

a. Viết công thức tính thể tích của hình hộp chữ nhật.

 b. Áp dụng: Tính thể tích của hình hộp chữ nhật với AA’ = 5cm, AB = 3cm, AD = 4cm (hình vẽ trên).

Câu 6:(2,5 điểm) Cho tam giác ABC vuông tại A có AB = 6cm; AC = 8cm. Kẻ đường cao AH.

a) Chứng minh: ∆ABC và ∆HBA đồng dạng với nhau.

 

  b) Chứng minh: AH2 = HB.HC.

  c) Tính độ dài các cạnh BC, AH.

9
29 tháng 4 2016

đây là nick phụ của bạn trần việt hà

29 tháng 4 2016

không phải

2 tháng 4 2019

Chọn đáp án B

Do S.ABCD là hình chóp tứ giác đều nên mỗi mặt bên là một tam giác cân tại đỉnh S.

Theo giả thiết ta có

 

Cắt hình chóp theo cạnh bên SA rồi trải các mặt bên thành một mặt phẳng ta được hình vẽ bên sao cho khí ghép lại thì A ≡ A '

Suy ra A S A ' ⏜ = 4 . A S B ⏜ = π 3 và ∆ S A A ' đều cạnh SA = a

Khi đó tổng AM + MN + NP + PQ là tổng của các đường gấp khúc.

Tổng này đạt nhỏ nhất bằng AQ nếu xảy ra trường hợp các điểm A, M, N, P, Q thẳng hàng.

Mà  ∆ S A A ' đều có Q là trung điểm SA nên A Q = S A 3 2 = a 3 2  

Vậy m i n A M + M N + N P + P Q = a 3 2   

 

22 tháng 3 2022

lên đây mà xem nek: https://qanda.ai/vi/solutions/3j3oUVV6jJ

AH
Akai Haruma
Giáo viên
15 tháng 1 2017

Lời giải:

a) Gọi phương trình đường thẳng có dạng $y=ax+b$ $(d)$

\(B,C\in (d)\Rightarrow \left\{\begin{matrix} 3=2a+b\\ -3=-4a+b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=1\\ b=1\end{matrix}\right.\Rightarrow y=x+1\)

Vậy PT đường thẳng chứa cạnh $BC$ có dạng $y=x+1$

b) Tương tự, ta lập được phương trình đường thẳng chứa cạnh $AC$ là \((d_1):y=\frac{2x}{5}-\frac{7}{5}\).

Gọi PT đường cao đi qua $B$ của tam giác $ABC$ là \((d'):y=ax+b\)

\((d')\perp (d_1)\Rightarrow \frac{2}{5}a=-1\Rightarrow a=\frac{-5}{2}\).

Mặt khác \(B\in (d')\Rightarrow 3=\frac{-5}{2}.2+b\Rightarrow b=8\)

\(\Rightarrow (d'):y=\frac{-5x}{2}+8\)

c) Gọi điểm thỏa mãn ĐKĐB là $M(a,b)$

Ta có: \(M\in (\Delta)\Rightarrow 2a+b-3=0\) $(1)$

$M$ cách đều $A,B$ \(\Rightarrow MA^2=MB^2\Rightarrow (a-1)^2+(b+1)^2=(a-2)^2+(b-3)^2\)

\(\Leftrightarrow 2-2a+2b=13-4a-6b\)

\(\Leftrightarrow 11-2a-8b=0(2)\)

Từ \((1);(2)\Rightarrow \left\{\begin{matrix} a=\frac{13}{14}\\ b=\frac{8}{7}\end{matrix}\right.\Rightarrow M\left ( \frac{13}{14};\frac{8}{7} \right )\)

15 tháng 1 2017

con nếu đề bài cho 1 điểm và phương trình đường thẳng của tam giác muốn tìm phương trình đường cao còn lại vầ các cạnh thj làm thế nào

a: \(\text{Δ}ABC\sim\text{Δ}HBA;\text{Δ}ABC\sim\text{Δ}HCA\)

b: \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{15\cdot20}{25}=12\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9\left(cm\right)\)

CH=BC-BH=25-9=16(cm)