K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b) Thay x=0 vào A, ta được:

\(A=\dfrac{15\cdot\sqrt{0}-11}{0+2\sqrt{0}-3}-\dfrac{3\sqrt{0}-2}{\sqrt{0}-1}-\dfrac{2\sqrt{0}+3}{\sqrt{0}+3}\)

\(=\dfrac{-11}{-3}-\dfrac{-2}{-1}-\dfrac{3}{3}\)

\(=\dfrac{11}{3}-2-1\)

\(=\dfrac{11}{3}-\dfrac{9}{3}=\dfrac{2}{3}\)

22 tháng 3 2021

Thank

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-1}{\sqrt{x}}\)

b: Thay \(x=3+2\sqrt{2}\) vào P, ta được:

\(P=\dfrac{2\sqrt{2}+2}{\sqrt{2}+1}=2\)

18 tháng 10 2021

a. B = \(\dfrac{\sqrt{36}}{\sqrt{36}-3}=\dfrac{6}{6-3}=2\)

 

18 tháng 10 2021

a: Thay x=36 vào B, ta được:

\(B=\dfrac{6}{6-3}=\dfrac{6}{3}=2\)

a: Sửa đề: \(P=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right):\dfrac{2}{x^2-2x+1}\)

\(=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)^2}\cdot\dfrac{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)^2}{2}\)

\(=\dfrac{x-\sqrt{x}-2-\left(x+\sqrt{x}-2\right)}{\sqrt{x}-1}\cdot\dfrac{1}{2}\)

\(=\dfrac{-\sqrt{x}}{\sqrt{x}-1}\)

b: Để P>0 thì \(-\dfrac{\sqrt{x}}{\sqrt{x}-1}>0\)

=>\(\dfrac{\sqrt{x}}{\sqrt{x}-1}< 0\)

=>\(\sqrt{x}< 1\)

=>\(0< =x< 1\)

c: Thay \(x=7-4\sqrt{3}=\left(2-\sqrt{3}\right)^2\) vào P, ta được:

\(P=\dfrac{-\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{\left(2-\sqrt{3}\right)^2}-1}\)

\(=\dfrac{-\left(2-\sqrt{3}\right)}{2-\sqrt{3}-1}=\dfrac{-2+\sqrt{3}}{1-\sqrt{3}}=\dfrac{2-\sqrt{3}}{\sqrt{3}-1}\)

\(=\dfrac{\sqrt{3}-1}{2}\)

12 tháng 4 2022

1.\(x=4\)

\(B=\left(\dfrac{x+1}{2}-\sqrt{x}\right)=\left(\dfrac{4+1}{2}-\sqrt{4}\right)=\dfrac{5}{2}--2=\dfrac{5-4}{2}=\dfrac{1}{2}\)

2.\(A=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right)=\left(\dfrac{\left(\sqrt{x}+1\right)-\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

        \(=\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(B=\dfrac{x+1}{2}-\sqrt{x}=\dfrac{x+1-2\sqrt{x}}{2}=\dfrac{\left(\sqrt{x}-1\right)^2}{2}\)

\(M=A.B=\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{2}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

3.\(M=\dfrac{\sqrt{x}}{6}\)

\(\Leftrightarrow\dfrac{\sqrt{x}}{6}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)=6\left(\sqrt{x}-1\right)\)

\(\Leftrightarrow x+\sqrt{x}=6\sqrt{x}-6\)

\(\Leftrightarrow x-5\sqrt{x}+6=0\)

Đặt \(\sqrt{x}=a;a\ge0\)

=> pt trở thành:

\(a^2-5a+6=0\)

\(\Delta=\left(-5\right)^2-4.6=25=24=1>0\)

=> pt có 2 nghiệm:

\(\left\{{}\begin{matrix}x_1=\dfrac{5+\sqrt{1}}{2}=3\left(tm\right)\\x_2=\dfrac{5-\sqrt{1}}{2}=2\left(tm\right)\end{matrix}\right.\)

Xét \(\sqrt{a}=3\)

\(\Leftrightarrow a=9\)

Xét \(\sqrt{a}=2\)

\(\Leftrightarrow a=4\)

Vậy \(x=9;4\)

24 tháng 11 2021

\(a,ĐK:x>0;x\ne9\\ b,A=\dfrac{\sqrt{x}+3+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\\ A=\dfrac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}=\dfrac{2}{\sqrt{x}+3}\\ c,A>\dfrac{2}{5}\Leftrightarrow\dfrac{2}{\sqrt{x}+3}-\dfrac{2}{5}>0\\ \Leftrightarrow\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{5}>0\\ \Leftrightarrow\dfrac{2-\sqrt{x}}{5\left(\sqrt{x}+3\right)}>0\\ \Leftrightarrow2-\sqrt{x}>0\left(\sqrt{x}+3>0\right)\\ \Leftrightarrow\sqrt{x}< 2\Leftrightarrow0< x< 4\)

11 tháng 7 2021

a)ĐKXĐ:\(\begin{cases}x\ge0\\2\sqrt{x}-2\ne0\\1-x\ne0\\\end{cases}\)

`<=>` \(\begin{cases}x\ge0\\x\ne1\\\end{cases}\)

`B=1/(2sqrtx-2)-1/(2sqrtx+2)+sqrtx/(1-x)`

`=1/(2(sqrtx-1))-1/(2(sqrtx+1))-sqrtx/(x-1)`

`=(sqrtx+1-(sqrtx-1)-2sqrtx)/(2(sqrtx-1)(sqrtx+1))`

`=(2-2sqrtx)/(2(sqrtx-1)(sqrtx+1))`

`=(2(1-sqrtx))/(2(sqrtx-1)(sqrtx+1))`

`=-1/(sqrtx+1)`

`b)x=3`

`=>B=(-1)/(sqrt3+1)`

`=(-(sqrt3-1))/(3-1)`

`=(1-sqrt3)/2`

`c)|A|=1/2`

`<=>|(-1)/(sqrtx+1)|=1/2`

`<=>|1/(sqrtx+1)|=1/2`

`<=>1/(sqrtx+1)=1/2` do `1>0,sqrtx+1>=1>0`

`<=>sqrtx+1=2`

`<=>sqrtx=1`

`<=>x=1` loại vì `x ne 1`.

a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

Ta có: \(B=\dfrac{1}{2\sqrt{x}-2}-\dfrac{1}{2\sqrt{x}+2}+\dfrac{\sqrt{x}}{1-x}\)

\(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{-2\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{-1}{\sqrt{x}+1}\)

b) Thay x=3 vào B, ta được:

\(B=\dfrac{-1}{\sqrt{3}+1}=\dfrac{-\sqrt{3}+1}{2}\)

c) Ta có: \(\left|A\right|=\dfrac{1}{2}\)

nên \(\left[{}\begin{matrix}A=\dfrac{1}{2}\\A=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{-1}{\sqrt{x}+1}=\dfrac{1}{2}\\\dfrac{-1}{\sqrt{x}+1}=\dfrac{-1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+1=-2\\\sqrt{x}+1=2\end{matrix}\right.\Leftrightarrow x=1\)(loại)

loading...  loading...