K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2018

2,

\(M=\dfrac{\dfrac{3}{5}+\dfrac{3}{7}-\dfrac{3}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{11}}\) =\(\dfrac{3\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}{4\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}\)

\(=\dfrac{3}{4}\)

6 tháng 5 2022

a) \(A=2A-A\)

\(=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)\)

\(=1+\dfrac{1}{2}+...+\dfrac{1}{2^{2021}}-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)\)

\(=1-\dfrac{1}{2^{2022}}\)

b) \(B=\dfrac{20+15+12+17}{60}=\dfrac{4}{5}=1-\dfrac{1}{5}\)

\(A>B\left(Vì\left(\dfrac{1}{2^{2022}}< \dfrac{1}{5}\right)\right)\)

 

6 tháng 5 2022

a) A = 2 A − A = 2 ( 1 2 + 1 2 2 + . . . + 1 2 2022 ) − ( 1 2 + 1 2 2 + . . . + 1 2 2022 ) = 1 + 1 2 + . . . + 1 2 2021 − ( 1 2 + 1 2 2 + . . . + 1 2 2022 ) = 1 − 1 2 2022 b) B = 20 + 15 + 12 + 17 60 = 4 5 = 1 − 1 5 A > B ( V ì ( 1 2 2022 < 1 5 ) )

\(A=\dfrac{\left(3+\dfrac{2}{15}+\dfrac{1}{5}\right):\dfrac{5}{2}}{\left(5+\dfrac{3}{7}-2-\dfrac{1}{4}\right):\left(4+\dfrac{43}{56}\right)}\)

\(=\dfrac{\dfrac{10}{3}\cdot\dfrac{2}{5}}{\dfrac{89}{28}:\dfrac{267}{56}}=\dfrac{4}{3}:\dfrac{2}{3}=2\)

\(B=\dfrac{\dfrac{6}{5}:\left(\dfrac{6}{5}\cdot\dfrac{5}{4}\right)}{\dfrac{8}{25}+\dfrac{2}{25}}=\dfrac{\dfrac{6}{5}:\dfrac{3}{2}}{\dfrac{2}{5}}=2\)

Do đó: A=B

1 tháng 8 2021

1/ \(\left(\dfrac{2021}{2020}+\dfrac{2020}{2021}\right).\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\)

=\(\left(\dfrac{2021}{2020}+\dfrac{2020}{2021}\right).0\)

=\(0\)

 

26 tháng 10 2021

mink chịu bài này nó rất khó

7 tháng 5 2017

lầy dạ??

6 tháng 5 2017

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{1009^2}\)

Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{4};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{1009^2}< \dfrac{1}{1008.1009}\)

\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{1009^2}< \dfrac{1}{4}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{1008.1009}\)\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{1008}-\dfrac{1}{1009}\)

\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{1009}\)

\(\Rightarrow A< \dfrac{3}{4}-\dfrac{1}{1009}\)

\(\Rightarrow A< \dfrac{3}{4}\left(đpcm\right)\)

23 tháng 6 2021

\(2021-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)\)

\(=\left(1-1\right)+\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+...+\left(1-\dfrac{1}{2021}\right)\)

\(=\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{2020}{2021}\)

Giải:

\(2021-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)=\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{2020}{2021}\) 

Ta có:

\(2021-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)\) 

\(=\left(1-1\right)+\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+...+\left(1-\dfrac{1}{2021}\right)\) 

\(=0+\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{2020}{2021}\) 

\(=\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{2020}{2021}\) 

Mà \(\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{2020}{2021}=\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{2020}{2021}\) 

\(\Rightarrow2021-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)=\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{2020}{2021}\left(đpcm\right)\)

14 tháng 5 2021

\(a.\dfrac{2}{3}+\dfrac{4}{3}:\dfrac{-2}{3}=\dfrac{2}{3}+\left(-2\right)=\dfrac{-4}{3}\)

\(b.3\dfrac{4}{5}-\left(2\dfrac{1}{4}+1\dfrac{4}{5}\right)\\ =3\dfrac{4}{5}-2\dfrac{1}{4}-1\dfrac{4}{5}\\ =\left(3\dfrac{4}{5}-1\dfrac{4}{5}\right)-2\dfrac{1}{4}\\ =2-2\dfrac{1}{4}=\dfrac{1}{4}\)

\(c.\dfrac{-3}{5}.\dfrac{4}{7}+\dfrac{3}{7}.\dfrac{-3}{5}+\dfrac{3}{5}\\ =\dfrac{-3}{5}\left(\dfrac{4}{7}+\dfrac{3}{7}\right)+\dfrac{3}{5}\\ =\dfrac{-3}{5}+\dfrac{3}{5}=0\)

14 tháng 5 2021

a) \(\dfrac{2}{5}+\dfrac{4}{3}:\dfrac{-2}{3}\)

\(=\dfrac{2}{5}+\dfrac{4}{3}.\dfrac{-3}{2}\)

\(=\dfrac{2}{5}+-2\)

\(=\dfrac{2}{5}+\dfrac{-10}{5}\)

\(=\dfrac{-8}{5}\)

12 tháng 3 2023

Sửa đề : \(M=\left(\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}-\dfrac{\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{5}}{1\dfrac{1}{6}-\dfrac{7}{6}+\dfrac{7}{10}}\right):\dfrac{2021}{2022}\)

\(M=\left(\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}-\dfrac{\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{5}}{1\dfrac{1}{6}-\dfrac{7}{6}+\dfrac{7}{10}}\right):\dfrac{2021}{2022}\\ =\left(\dfrac{2\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{11}\right)}{7\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{7}{11}\right)}-\dfrac{\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{5}}{\dfrac{7}{6}-\dfrac{7}{6}+\dfrac{7}{10}}\right):\dfrac{2021}{2022}\\ =\left(\dfrac{2}{7}-\dfrac{\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{5}}{\dfrac{7}{2}\left(\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{5}\right)}\right):\dfrac{2021}{2020}\\ =\left(\dfrac{2}{7}-\dfrac{2}{7}\right):\dfrac{2021}{2022}=0\)

12 tháng 3 2023

cảm ơn bạn mk nhầm đề

\(\dfrac{1}{3^2}>\dfrac{1}{3\cdot4}=\dfrac{1}{3}-\dfrac{1}{4}\)

\(\dfrac{1}{4^2}>\dfrac{1}{4\cdot5}=\dfrac{1}{4}-\dfrac{1}{5}\)

...

\(\dfrac{1}{100^2}>\dfrac{1}{100}-\dfrac{1}{101}\)

Do đó: \(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}>\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{3}-\dfrac{1}{101}=\dfrac{98}{303}>\dfrac{90.9}{303}=\dfrac{3}{10}\)(1)

\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)

\(\dfrac{1}{4^2}< \dfrac{1}{3}-\dfrac{1}{4}\)

...

\(\dfrac{1}{100^2}< \dfrac{1}{99}-\dfrac{1}{100}\)

Do đó: \(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

=>\(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}-\dfrac{1}{100}=\dfrac{49}{100}< \dfrac{50}{100}=\dfrac{1}{2}\)(2)

Từ (1),(2) suy ra \(\dfrac{3}{10}< \dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}\)