Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét phân số trung gian là \(\dfrac{72}{78}\) , ta thấy:
\(\dfrac{72}{73}>\dfrac{72}{78}\)
\(\dfrac{58}{78}< \dfrac{72}{78}\)
\(\Rightarrow\dfrac{72}{73}>\dfrac{58}{78}\)
b. Xét phân số trung gian là \(\dfrac{n}{n+2}\) , ta thấy:
\(\dfrac{n}{n+3}< \dfrac{n}{n+2}\)
\(\dfrac{n}{n+2}< \dfrac{n+1}{n+2}\)
\(\Rightarrow\dfrac{n}{n+3}< \dfrac{n+1}{n+2}\)
c. Ta có: \(\dfrac{10^{11}-1}{10^{12}-1}< 1\) (vì tử < mẫu)
\(\Rightarrow\dfrac{10^{11}-1}{10^{12}-1}< \dfrac{\left(10^{11}-1\right)+11}{\left(10^{12}-1\right)+11}=\dfrac{10^{11}+10}{10^{12}+10}=\dfrac{10^{10}+1}{10^{11}+1}\)
Vậy \(\dfrac{10^{11}-1}{10^{12}-1}< \dfrac{10^{10}+1}{10^{11}+1}\)
d. Xét phân số trung gian là \(\dfrac{1}{4}\) , ta thấy:
\(\dfrac{12}{47}>\dfrac{12}{48}=\dfrac{1}{4}\)
\(\dfrac{19}{77}< \dfrac{19}{76}=\dfrac{1}{4}\)
\(\Rightarrow\dfrac{12}{47}>\dfrac{19}{77}\)
8)\(\frac{4}{9}:\left(-\frac{1}{7}\right)+6\frac{5}{9}:\left(-\frac{1}{7}\right)\)
=\(\frac{4}{9}:\left(-\frac{1}{7}\right)+\frac{59}{9}:\left(-\frac{1}{7}\right)\)
=\(\left(\frac{4}{9}+\frac{59}{9}\right).\left(-7\right)\)
=7.(-7)
=-49
a, \(\left(\dfrac{-5}{11}\right).\dfrac{7}{15}.\left(\dfrac{11}{-5}\right).\left(-30\right)=\dfrac{-5}{11}.\dfrac{7}{15}.\dfrac{-11}{5}.\dfrac{-30}{1}\)= ( - 14 )
b, \(\left(\dfrac{11}{12}:\dfrac{33}{16}\right).\dfrac{3}{5}=\dfrac{11}{12}.\dfrac{16}{33}.\dfrac{3}{5}=\dfrac{1.4.3}{3.3.5}=\dfrac{4}{15}\)
c, \(\dfrac{-7}{15}.\dfrac{5}{8}.\dfrac{15}{-7}.\left(-16\right)=\dfrac{-7}{15}.\dfrac{5}{8}.\dfrac{-15}{7}.\dfrac{-16}{1}\)
\(\dfrac{-1.5.-1.-2}{1.1.1.1}=\left(-10\right)\)
d,\(\left(\dfrac{-1}{2}\right).3\dfrac{1}{5}+\left(\dfrac{-1}{2}\right).-2\dfrac{1}{5}=\left(\dfrac{-1}{2}\right).\left[\dfrac{16}{5}+\left(\dfrac{-11}{5}\right)\right]\)
= \(\left(\dfrac{-1}{2}\right).1=\dfrac{-1}{2}\)
a) (-5/11.11/-5).7/15
=1.7/15=7/15
b)(11/12:33/16).3/5
=(11/12.16/33).3/5
=4/9.3/5=4/15
c)(-7/15.15/-7).5/8
=1.5/8=5/8
d)(-1/2).(16/5.-11/5)
=-1/2.1=-1/2
xg r đó
a, \(\dfrac{2}{3}-4\left(\dfrac{1}{2}+\dfrac{3}{4}\right)=\dfrac{2}{3}-4.\dfrac{5}{4}=\dfrac{2}{3}-5=-\dfrac{13}{3}\)
b, \(-\dfrac{2}{3}.\dfrac{3}{11}+\dfrac{-16}{9}.\dfrac{3}{11}=\dfrac{3}{11}.\left(-\dfrac{2}{3}+\dfrac{-16}{9}\right)\)
\(=\dfrac{3}{11}.\dfrac{-22}{9}=-\dfrac{2}{3}\)
Câu c lấy máy tính tính nha!
c,
c) \(\dfrac{11}{125}-\dfrac{17}{18}-\dfrac{5}{7}+\dfrac{4}{9}+\dfrac{17}{14}\)
\(=\dfrac{11}{125}-\dfrac{17}{18}-\dfrac{10}{14}+\dfrac{8}{18}+\dfrac{17}{14}\)
\(=\dfrac{11}{125}+\left(-\dfrac{17}{18}+\dfrac{8}{18}\right)+\left(-\dfrac{10}{14}+\dfrac{17}{14}\right)\)
\(=\dfrac{11}{125}+\left(-\dfrac{9}{18}\right)+\dfrac{7}{14}\)
\(=\dfrac{11}{125}+\left(-\dfrac{1}{2}\right)+\dfrac{1}{2}\)
\(=\dfrac{11}{125}+0=\dfrac{11}{125}\)
Ta có : a, 25/7 + 13/21 - 11/7 + 17/21 + 1/3 .
= ( 25/7 - 11/7 ) + ( 13/21 + 17/21 + 1/3 ) .
= 2 + ( 20/21 + 7/21 ) .
= 2 + 9/7 .
= 23/7 .
b, ( 1/3 + 12/67 + 13/41 ) - ( 79/67 - 28/41 ) .
= 1/3 + 12/67 + 13/41 - 79/67 + 28/41 .
= 1/3 + ( 12/67 - 79/67 ) + ( 13/41 + 28/41 ) .
= 1/3 - 1 + 1 .
= 1/3 .
c, ( 11/4 . -5/9 - 4/9 . 11/4 ) . 8/33 .
= [ 11/4 . ( -5/9 - 4/9 ) ] . 8/33 .
= [ 11/4 . ( - 1 ) ] . 8/33 .
= -11/4 . 8/33 .
= -2/3 .
d, 38/45 - ( 8/45 - 17/51 - 3/11 ) .
= 38/45 - 8/45 + 17/51 + 3/11 .
= 2/3 + 17/51 + 3/11 .
= 374/561 + 187/561 + 153/561 .
= 14/11 .
1. Tính:
a. \(\dfrac{\text{−1 }}{\text{4 }}+\dfrac{\text{5 }}{\text{6 }}=\dfrac{-3}{12}+\dfrac{10}{12}=\dfrac{7}{12}\)
b. \(\dfrac{\text{5 }}{\text{12 }}+\dfrac{\text{-7 }}{8}=\dfrac{10}{24}+\dfrac{-21}{24}=\dfrac{-11}{24}\)
c. \(\dfrac{-7}{6}+\dfrac{-3}{10}=\dfrac{-35}{30}+\dfrac{-9}{30}=\dfrac{-44}{30}=\dfrac{-22}{15}\)
d.\(\dfrac{-3}{7}+\dfrac{5}{6}=\dfrac{-18}{42}+\dfrac{35}{42}=\dfrac{17}{42}\)
2. Tính :
a. \(\dfrac{2}{14}-\dfrac{5}{2}=\dfrac{2}{14}-\dfrac{35}{14}=\dfrac{-33}{14}\)
b.\(\dfrac{-13}{12}-\dfrac{5}{18}=\dfrac{-39}{36}-\dfrac{10}{36}=\dfrac{49}{36}\)
c.\(\dfrac{-2}{5}-\dfrac{-3}{11}=\dfrac{-2}{5}+\dfrac{3}{11}=\dfrac{-22}{55}+\dfrac{15}{55}=\dfrac{-7}{55}\)
d. \(0,6--1\dfrac{2}{3}=\dfrac{6}{10}--\dfrac{5}{3}=\dfrac{3}{5}+\dfrac{5}{3}=\dfrac{9}{15}+\dfrac{25}{15}=\dfrac{34}{15}\)
3. Tính :
a.\(\dfrac{-1}{39}+\dfrac{-1}{52}=\dfrac{-4}{156}+\dfrac{-3}{156}=\dfrac{-7}{156}\)
b.\(\dfrac{-6}{9}-\dfrac{12}{16}=\dfrac{2}{3}-\dfrac{3}{4}=\dfrac{8}{12}-\dfrac{9}{12}=\dfrac{-17}{12}\)
c. \(\dfrac{-3}{7}-\dfrac{-2}{11}=\dfrac{-3}{7}+\dfrac{2}{11}=\dfrac{-33}{77}+\dfrac{14}{77}=\dfrac{-19}{77}\)
d.\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
\(=\dfrac{1}{1}+\dfrac{1}{10}\)
\(=\dfrac{10}{10}-\dfrac{1}{10}\)
= \(\dfrac{9}{10}\)
Chế Kazuto Kirikaya thử tham khảo thử đi !!!
Mấy câu trên kia dễ rồi mình chữa mình câu \(c\) bài \(3\) thôi nhé Kazuto Kirikaya
d) \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}\)
\(=\dfrac{9}{10}\)
\(5\dfrac{1}{2}+\left(-3\right)4\dfrac{9}{11}+\left(-2\dfrac{1}{11}\right)2\dfrac{1}{2}+\left(-6\right)\left(-\dfrac{4}{5}\right)+\dfrac{1}{2}\)
\(=\dfrac{11}{2}+\left(-3\right).\dfrac{53}{11}+\left(-\dfrac{23}{11}\right).\dfrac{5}{2}+\dfrac{24}{5}+\dfrac{1}{2}\)
\(=\dfrac{11}{2}+\left(-\dfrac{159}{11}\right)+\left(-\dfrac{115}{22}\right)+\dfrac{24}{5}+\dfrac{1}{2}\)
\(=\left(\dfrac{11}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{318}{22}\right)+\left(-\dfrac{115}{22}\right)+\dfrac{24}{5}\)
\(=\dfrac{12}{2}+\left(-\dfrac{433}{22}\right)+\dfrac{24}{5}\)
\(=-\dfrac{977}{110}\)
\(5\dfrac{1}{2}+\left(-3\right).4\dfrac{9}{11}+\left(-2\dfrac{1}{11}\right).2\dfrac{1}{2}+\left(-6\right).\left(-\dfrac{4}{5}\right)+\dfrac{1}{2}\)
\(=\dfrac{11}{2}+\left(-3\right).\dfrac{53}{11}+\left(-\dfrac{23}{11}\right).\dfrac{5}{2}+\left(-6\right).\left(-\dfrac{4}{5}\right)+\dfrac{1}{2}\)
\(=\dfrac{11}{2}+\left(-14\dfrac{5}{11}\right)+\left(-5\dfrac{5}{22}\right)+4\dfrac{4}{5}+\dfrac{1}{2}\)
\(=\dfrac{11}{2}+\left(-\dfrac{159}{11}\right)+\left(-\dfrac{115}{22}\right)+\dfrac{24}{5}+\dfrac{1}{2}\)
\(=\dfrac{11}{2}+\left(-\dfrac{318}{22}\right)+\left(-\dfrac{115}{22}\right)+\dfrac{24}{5}+\dfrac{1}{2}\)
\(=\left(\dfrac{11}{2}+\dfrac{1}{2}\right)+\left[\left(-\dfrac{318}{22}\right)+\left(-\dfrac{115}{22}\right)\right]+\dfrac{24}{5}\)
\(=\dfrac{11+1}{2}+\dfrac{\left(-318\right)+\left(-115\right)}{22}+\dfrac{24}{5}\)
\(=\dfrac{12}{2}+\left(-\dfrac{433}{22}\right)+\dfrac{24}{5}\)
\(=-8\dfrac{97}{110}=-\dfrac{977}{110}\)
a,\(\dfrac{1}{3}-\dfrac{3}{5}+\dfrac{5}{7}-\dfrac{7}{9}+\dfrac{9}{11}-\dfrac{11}{13}+\dfrac{13}{15}+\dfrac{11}{13}-\dfrac{9}{11}+\dfrac{7}{9}-\dfrac{5}{7}+\dfrac{3}{5}-\dfrac{1}{3}\)
\(=\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(-\dfrac{3}{5}+\dfrac{3}{5}\right)+.....+\left(-\dfrac{11}{13}+\dfrac{11}{13}\right)+\dfrac{13}{15}\)
\(=0+0+...0+0+\dfrac{13}{15}=\dfrac{13}{15}\)
câu b và c xem lại đề nha
Chúc bạn học tốt!!!
\(B=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{98}+\left(\dfrac{1}{2}\right)^{99}\)
\(\Rightarrow2B=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{97}+\left(\dfrac{1}{2}\right)^{98}\)
\(\Rightarrow2B-B=1-\left(\dfrac{1}{2}\right)^{99}\)
\(B=1-\left(\dfrac{1}{2}\right)^{99}\)
\(2,\)
\(a,\dfrac{45^{10}.2^{10}}{75^{15}}\)
\(=\dfrac{5^{10}.9^{10}.2^{10}}{25^{15}.3^{15}}\)
\(=\dfrac{5^{10}.3^{20}.2^{10}}{5^{30}.3^{15}}\)
\(=\dfrac{5^{10}.3^{15}.\left(3^5.2^{10}\right)}{5^{10}.3^{15}.\left(5^{20}\right)}\)
\(=\dfrac{3^5.2^{10}}{5^{20}}\)
\(b,\dfrac{2^{15}.9^4}{6^3.8^3}\)
\(=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)
\(c,\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{4^{10}.2^{10}+4^{10}}{4^4.2^4+4^4.4^7}=\dfrac{4^4.\left(4^6.2^{10}+4^6\right)}{4^4.\left(2^4+4^7\right)}\)
\(=\dfrac{4^{11}+4^6}{4^8.4^7}=\dfrac{4^6.\left(4^5+1\right)}{4^6.\left(4^2-4\right)}=\dfrac{1024+1}{16-4}=\dfrac{1025}{12}\)
\(d,\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)
\(3,\)
\(a,\left(2x+4\right)^2=\dfrac{1}{4}\)
\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2=\left(\dfrac{-1}{2}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}2x+4=\dfrac{1}{2}\\2x+4=\dfrac{-1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{1}{2}-4=\dfrac{-7}{2}\\2x=\dfrac{-1}{2}-4=\dfrac{-9}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-7}{4}\\x=\dfrac{-9}{4}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{-7}{4};\dfrac{-9}{4}\right\}\)
\(b,\left(2x-3\right)^2=36\)
\(\left(2x-3\right)^2=6^2=\left(-6\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=6+3=9\\2x=-6+3=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=\dfrac{-3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{9}{2};\dfrac{-3}{2}\right\}\)
\(c,5^{x+2}=628\)
\(5^{x+2}=5^4\)
\(\Rightarrow x+2=4\)
\(\Rightarrow x=4-2=2\)
Vậy \(x=2\)
\(d,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)
\(\Rightarrow\left(x-1\right)^{x+4}-\left(x-1\right)^{x+2}=0\)
\(\Rightarrow\left(x-1\right)^{x+2}.\left[\left(x-1\right)^2-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^2-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x-1=1\\x-1=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)
Vậy \(x\in\left\{0;1;2\right\}\)
Bài 1:
B= \(\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{99}\)
2B= \(2.[\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{99}]\)
2B= \(1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{98}\)
⇒2B-B= \(1-\left(\dfrac{1}{2}\right)^{99}\)
B= 1
Vậy B=1
Bài 2:
a, \(\dfrac{45^{10}.2^{10}}{75^{15}}\)= \(\dfrac{\left(3^2.5\right)^{10}.2^{10}}{\left(3.5^2\right)^{15}}=\dfrac{3^{20}.5^{10}.2^{10}}{3^{15}.5^{30}}=\dfrac{3^5.2^{10}}{5^{20}}\)
b, \(\dfrac{2^{15}.9^4}{6^3.8^3}=\dfrac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^3.\left(2^3\right)^3}=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)
c,\(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{\left(2.4\right)^{10}+4^{10}}{\left(2.4\right)^4+4^{11}}=\dfrac{2^{10}.4^{10}+4^{10}}{2^4.4^4+4^{11}}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6+4^6.4^5}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(4^5+1\right)}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(2^{10}+1\right)}=4^4=256\)
d, \(\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{\left(3^4\right)^{11}.3^{17}}{\left(3^3\right)^{10}.\left(3^2\right)^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)
Bài 3:
a, \(\left(2x+4\right)^2=\dfrac{1}{4}\)
\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2\)
\(2x+4=\dfrac{1}{2}\)
\(2x=\dfrac{1}{2}-4\)
\(2x=-\dfrac{7}{2}\)
\(x=-\dfrac{7}{2}:2\)
\(x=-\dfrac{7}{2}.\dfrac{1}{2}\)
\(x=-\dfrac{7}{4}\)
b, \(\left(2x-3\right)^2=36\)
\(\left(2x-3\right)^2=6^2\)
\(2x-3=6\)
\(2x=9\)
\(x=\dfrac{9}{2}\)
c, \(5^{x+2}=625\)
\(5^{x+2}=5^4\)
\(x+2=4\)
\(x=2\)
a: \(A=\dfrac{\dfrac{3}{8}-\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}}{\dfrac{-5}{8}+\dfrac{5}{10}-\dfrac{5}{11}-\dfrac{5}{12}}+\dfrac{\dfrac{3}{2}+\dfrac{3}{3}-\dfrac{3}{4}}{\dfrac{5}{2}+\dfrac{5}{3}-\dfrac{5}{4}}\)
\(=\dfrac{-3}{5}+\dfrac{3}{5}=0\)
b: \(=3^4-\left(-8\right)^2-\left(-25\right)^2\)
\(=81-64-625=-608\)
c: \(=2^3+3\cdot1\cdot\dfrac{1}{4}\cdot4+\left[4:\dfrac{1}{2}\right]:8\)
\(=8+3+4\cdot2:8=11+1=12\)
\(B=\dfrac{1}{11}+\dfrac{1}{11^2}+\dfrac{1}{11^3}+...+\dfrac{1}{11^{99}}+\dfrac{1}{11^{100}}\\ 11B=1+\dfrac{1}{11}+\dfrac{1}{11^2}+...+\dfrac{1}{11^{98}}+\dfrac{1}{11^{99}}\\ 11B-B=1+\dfrac{1}{11}+\dfrac{1}{11^2}+...+\dfrac{1}{1^{99}0}-\dfrac{1}{11}-\dfrac{1}{11^2}-\dfrac{1}{11^3}-...-\dfrac{1}{11^{100}}\\ 10B=1-\dfrac{1}{11^{99}}\\ B=\dfrac{1-\dfrac{1}{11^{99}}}{10}\)
có : `1-1/(11^99)<1`
\(\Rightarrow\dfrac{1-\dfrac{1}{11^{99}}}{10}< \dfrac{1}{10}\)
hay `B<1/10`
ở 11B*B là +1/11^99 nha