Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=\left(3^n.3^2+3^n.1\right)-\left(2^n.2^2+2^n.1\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n\left(9+1\right)-2^{n-1}.2^1\left(4+1\right)\)
\(=3^n.10-2^{n-1}.2.5\)
\(=3^n.10-2^{n-1}.10\)
\(=\left(3^n-2^{n-1}\right).10\text{⋮}10\)
mk thấy bn nên xem lại đề đi. nếu n=1 thì \(6^{2n}+19^n-2^{n+1}\) ko chia hết cho 17
62n+19n-2n+1=36n+19n-2n2=(36n-2n)+(19n-2n)=34k+17j chia het 17
vay bt chia het 17
Bài 1
3n + 2 - 2n + 2 + 3n - 2n
= 3n . 32 - 2n . 22 + 3n.1 - 2n.1
= 3n.(9 + 1) - 2n.(4 + 1)
= 3n . 10 - 2n . 5
= 3n . 10 - 2n - 1 . 2 . 5
= 3n . 10 - 2n - 1 . 10
= 10.(3n - 2n - 1)
Vậy với mọi n thì 3n + 2 - 2n + 2 + 3n - 2n chia hết cho 10
ta có : 3\(^{n+2}\)-\(2^{2+n}\)+3\(^n\)-2\(^n\)=\(3^n.3^2-2^2.2^n+3^n-2^n\)
=\(3^n\)(\(3^2+1\))-2\(^n\)(2\(^2\)+1)
=\(3^n\).10-\(2^n\).5
=5 (3\(^n\).2-2\(^n\))=5.(2.\(3^n\)-\(2^{n-1}\))
=5.A
ta thấy A là số chẵn mà 5 nhân vs bất kì số chẵn nào cũng có tân cùng = 0 nên \(3^{n+2}-2^{n+2}\)+\(3^n-2^n\)\(⋮10\)(đpcm )
Ta có:\(3^{n+2}-2^{n+2}+3^n-2^n=3^n\cdot9-2^n\cdot4+3^n-2^n=\left(3^n\cdot9+3^n\right)-\left(2^n\cdot4+2^n\right)\)
\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=3^n\cdot10-2^n\cdot5\)
Vì n>0\(\Rightarrow2^n⋮2\Rightarrow2^n\cdot5⋮2,2^n\cdot5⋮5\)
Mà ƯCLN(2;5)=1
\(\Rightarrow2^n\cdot5⋮2\cdot5=10\)
Lại có:\(3^n\cdot10⋮10\)
\(\Rightarrow3^n\cdot10-2^n\cdot5⋮10\)
\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\left(đpcm\right)\)