Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 : Tìm y
a) y : \(\dfrac{1}{4}\)+ \(\dfrac{1}{6}\) = \(\dfrac{2}{3}\)
Mn trình bày giúp mik nhé
Dựa vào những quy luật tính toán thời gian trên thì mỗi một phút sẽ có tổng cộng 60 giây. Tính ra trong vòng một năm không nhuận sẽ có tổng cộng 31536000 (365.24.60.60) giây trôi qua. Còn với năm nhuận tương ứng với 31622400 giây.
Bài 2:
a: \(=\dfrac{3}{5}\cdot\dfrac{6}{7}=\dfrac{18}{35}\)
b: =3/5+8/25
=15/25+8/25
=23/25
Bài 3:
a: =>x=2/3*2/5=4/25
b: =>x=4/9*2/3=8/27
Giả sử có phương án sắp xếp các số từ 1 đến 10 vào các đỉnh và các cạnh của ngũ giác sao cho tổng các số trên mỗi cạnh đều bằng nhau và bằng S.
Khi đó, ta lấy tổng tất cả 5 cạnh bằng 5.S và trong tổng này các số trên các cạnh được tính một lần, còn các số trên các đỉnh được tính hai lần. Ta gọi tổng các số trên 5 đỉnh là T, ta có:
5.S = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + T
Hay là:
S = (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + T)/5 = 11 + T/5
Vậy để S nhỏ nhất có thể thì T cũng phải nhỏ nhất, mà tổng T có 5 số trong các số {1,2, ..., 10} nên T nhỏ nhất khi T = 1 + 2 + 3 + 4 + 5 = 15.
Khi đó S = 11 + T/15 = 11 + 15/5 = 14
Hay nói cách khác, tổng các số trên mỗi cạnh nhỏ nhất bằng 14 khi đặt các số 1, 2, 3, 4, 5 trên các đỉnh của ngũ giác. Dưới đây là một phương án thỏa mãn điều kiện này.
19482105736
Giả sử có phương án sắp xếp các số từ 1 đến 10 vào các đỉnh và các cạnh của ngũ giác sao cho tổng các số trên mỗi cạnh đều bằng nhau và bằng S.
Khi đó, ta lấy tổng tất cả 5 cạnh bằng 5.S và trong tổng này các số trên các cạnh được tính một lần, còn các số trên các đỉnh được tính hai lần. Ta gọi tổng các số trên 5 đỉnh là T, ta có:
5.S = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + T
Hay là:
S = (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + T)/5 = 11 + T/5
Vậy để S nhỏ nhất có thể thì T cũng phải nhỏ nhất, mà tổng T có 5 số trong các số {1,2, ..., 10} nên T nhỏ nhất khi T = 1 + 2 + 3 + 4 + 5 = 15.
Khi đó S = 11 + T/15 = 11 + 15/5 = 14
Hay nói cách khác, tổng các số trên mỗi cạnh nhỏ nhất bằng 14 khi đặt các số 1, 2, 3, 4, 5 trên các đỉnh của ngũ giác. Dưới đây là một phương án thỏa mãn điều kiện này.
Nếu cứ tính ra thì ta có các phân số có tổng là 10 : 1/9 ; 2/8 ;....;9/1
Nếu tử số tăng thêm 1 đơn vị thì mẫu số giảm đi 1 đơn vị
Có phân số là : ( 9 : 1 ) + 1 = 10 ( phân số )
Vậy có 10 phân số có tổng bằng 10