Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: VT = (-2) + 3 = 1
VP = 2
=> VT < VP nên khẳng định (-2) + 3 ≥ 2 là sai.
b) Ta có: VT = -6
VP = 2.(-3) = -6
=> VT = VP nên khẳng định -6 ≤ 2.(-3) là đúng.
c) Ta có: VT = 4 + (-8) = -4
VP = 15 + (-8) = 7
=> VP > VT nên khẳng định 4 + (-8) < 15 + (-8) là đúng.
d) Vì \(x^2\) ≥ 0 với mọi x ∈ R
=> \(x^2\) + 1 ≥ 0 + 1
=> \(x^2\) + 1 ≥ 1
Vậy khẳng định \(x^2\)+ 1 ≥ 1 là đúng.
(Kí hiệu: VP = vế phải; VT = vế trái)
a) Ta có: VT = (-2) + 3 = 1
VP = 2
=> VT < VP nên khẳng định (-2) + 3 \(\ge\) 2 là sai.
b) Ta có: VT = -6
VP = 2.(-3) = -6
=> VT = VP nên khẳng định -6 \(\le\) 2.(-3) là đúng.
c) Ta có: VT = 4 + (-8) = -4
VP = 15 + (-8) = 7
=> VP > VT nên khẳng định 4 + (-8) < 15 + (-8) là đúng.
d) Vì x2 \(\ge\)0 với mọi x ∈ R
=> x2 + 1 \(\ge\) 0 + 1
=> x2 + 1 \(\ge\) 1
Vậy khẳng định x2 + 1 \(\ge\) 1 là đúng.
Ta có: 2 x 2 x - 2 xác định khi 2x – 2 ≠ 0 ⇒ 2x ≠ 2 ⇒ x ≠ 1
1 x 2 - 2 x + 1 = 1 x - 1 2 xác định khi x - 1 2 ≠ 0 ⇒ x – 1 ≠ 0 ⇒ x ≠ 1
5 x 3 x - 1 x 2 + 1 xác định khi x - 1 x 2 + 1 ≠ 0 hay x – 1 ≠ 0
( vì với mọi x thì x 2 ≥ 0 nên x 2 + 1 > 0 )
Do đó, phân thức 5 x 3 x - 1 x 2 + 1 xác định với x ≠ 1.
Vậy các phân thức 2 x 2 x - 2 ; 1 x 2 - 2 x + 1 ; 5 x 3 x - 1 x 2 + 1 có cùng điều kiện biến x là đúng.
a. -3 + 1 ≤ -2: Đúng
b. 7 – (-15) < 20: Sai
c. (-4).5 ≤ -18: Đúng
d. 8 : (-3) > 7 : (-2): Đúng
Ta có:
\(x^2\ge0\) với mọi \(x\)
nên cộng \(1\) vào mỗi vế của bất đẳng thức trên, ta được:
\(x^2+1\ge1\)
Dấu \("="\) xảy ra khi và chỉ khi \(x=0\)
Vậy, bất đẳng thức trên đúng!
đúng vì x^2>hoac bằng 0
=>x^2+1>=1