K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 4 2019

\(P=\frac{3x}{4}+\frac{12}{x}+\frac{3y}{4}+\frac{3}{y}+\frac{5}{4}\left(x+y\right)\)

\(P\ge2\sqrt{\frac{3x}{4}.\frac{12}{x}}+2\sqrt{\frac{3y}{4}.\frac{3}{y}}+\frac{5}{4}\left(x+y\right)\)

\(P\ge6+3+\frac{5}{4}.6=\frac{33}{2}\)

\(\Rightarrow P_{min}=\frac{33}{2}\) khi \(\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\)

18 tháng 4 2020

bạn tính như thế nào mà có thể nhận được cách tách ở dòng đầu vậy ạ?

21 tháng 6 2021

Má mày giúp tao bài tao gửi đii:(

DD
21 tháng 6 2021

Ta có bất đẳng thức: với \(x,y>0\)

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

Dấu \(=\)khi \(x=y\).

Áp dụng bất đẳng thức trên ta được: 

\(\frac{1}{2x+3y+3z}\le\frac{1}{4}\left(\frac{1}{2x+y+z}+\frac{1}{2y+2z}\right)\le\frac{1}{4}\left[\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{1}{2}\left(\frac{1}{y+z}\right)\right]\)

\(=\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{1}{8}\left(\frac{1}{y+z}\right)\)

Tương tự với \(\frac{1}{3x+2y+3z},\frac{1}{3x+3y+2z}\)sau đó cộng lại vế với vế ta được: 

\(P\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=3\)

Dấu \(=\)xảy ra khi \(x=y=z=\frac{1}{8}\)

11 tháng 5 2019

\(F=x+y+\frac{1}{2x}+\frac{2}{y}\)

\(F=\frac{x}{2}+\frac{x}{2}+\frac{y}{2}+\frac{y}{2}+\frac{1}{2x}+\frac{2}{y}\)

\(F=\left(\frac{x}{2}+\frac{1}{2x}\right)+\left(\frac{x}{2}+\frac{y}{2}\right)+\left(\frac{y}{2}+\frac{2}{y}\right)\)

\(F=\frac{1}{2}\left(x+\frac{1}{x}\right)+\left(\frac{x+y}{2}\right)+\left(\frac{y}{2}+\frac{2}{y}\right)\)

Ta có: \(x+\frac{1}{x}\ge2\Rightarrow\frac{1}{2}\left(x+\frac{1}{x}\right)\ge1\left(1\right)\)

\(x+y\ge3\Rightarrow\frac{x+y}{2}\ge\frac{3}{2}\left(2\right)\)

\(\frac{y}{2}+\frac{2}{y}\ge2\left(3\right)\)

Cộng lần lượt từng vế của 3 BĐT \(\left(1\right);\left(2\right);\left(3\right)\) ta được:

\(\frac{1}{2}\left(x+\frac{1}{x}\right)+\left(\frac{x+y}{2}\right)+\left(\frac{y}{2}+\frac{2}{y}\right)\ge1+\frac{3}{2}+2=\frac{9}{2}\)

\(\Rightarrow F\ge\frac{9}{2}\)

Vậy \(Min_F=\frac{9}{2}\)

NV
11 tháng 5 2019

\(F=\frac{x}{2}+\frac{1}{2x}+\frac{y}{2}+\frac{2}{y}+\frac{1}{2}\left(x+y\right)\)

\(F\ge2\sqrt{\frac{x}{4x}}+2\sqrt{\frac{2y}{2y}}+\frac{1}{2}.3=\frac{9}{2}\)

\(\Rightarrow F_{min}=\frac{9}{2}\) khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

20 tháng 8 2020

Ta có \(\left(\frac{x^3}{y^2+z}+\frac{y^3}{z^2+x}+\frac{z^3}{x^2+y}\right)\left[x\left(y^2+x\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\ge\left(x^2+y^2+z^2\right)^2\left(1\right)\)

Ta chứng minh \(\left(x^2+y^2+z^2\right)^2\ge\frac{4}{5}\left[x\left(y^2+z\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\)

\(\Leftrightarrow5\left(x^2+y^2+z^2\right)^2\ge4\left[x\left(y^2+z\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\left(2\right)\)

Thật vậy \(\hept{\begin{matrix}3\left(\Sigma x^2\right)^2\ge\left(\Sigma x^2\right)\cdot\Sigma x^2=4\Sigma zx\left(3\right)\\2\left(\Sigma x^2\right)^2\ge4\Sigma xy^2\left(4\right)\end{matrix}\Leftrightarrow2\left(\Sigma x^2\right)^2\ge\Sigma xy^2\left(x+y+z\right)}\)(*)

Từ các Bất Đẳng Thức \(\hept{\begin{cases}\frac{x^4-2x^3z+z^2x^2}{2}\ge0\\\frac{x^4+y^4+2x^4}{4}\ge xyz^2\end{cases}}\)=> (*) đúng

Như vậy (3),(4) đúng => (2) đúng

Từ đó suy ra \(T\ge\frac{4}{5}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)

15 tháng 4 2016

Theo giả thiết ta có : \(x+yz=yz-z-1=\left(z-1\right)\left(y+1\right)=\left(x+y\right)\left(y+1\right)\)

Tương tự : \(y+zx=\left(x+y\right)\left(x+1\right)\)

Và \(z+xy=\left(x+1\right)\left(y+1\right)\)

Nên \(P=\frac{x}{\left(x+y\right)\left(y+1\right)}+\frac{y}{\left(x+y\right)\left(x+1\right)}+\frac{z^2+2}{\left(x+1\right)\left(y+1\right)}\)

            \(=\frac{x^2+y^2+x+y}{\left(x+y\right)\left(x+1\right)\left(y+1\right)}+\frac{z^2+2}{\left(x+1\right)\left(y+1\right)}\)

Ta có \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2};\left(x+1\right)\left(y+1\right)\le\frac{\left(x+y+2\right)^2}{4}\)

nên \(P\ge\frac{2\left(x+y\right)^2+4\left(x+y\right)}{\left(x+y+2\right)^2\left(x+y\right)}+\frac{4\left(z^2+2\right)}{\left(x+y+2\right)^2}=\frac{2\left(x+y\right)+4}{\left(x+y+2\right)^2}+\frac{4\left(z^2+2\right)}{\left(x+y+2\right)^2}\)

                                                       \(=\frac{2}{z+1}+\frac{4\left(z^2+2\right)}{\left(z+1\right)^2}=f\left(z\right);z>1\)

Lập bảng biến thiên ta được \(f\left(z\right)\ge\frac{13}{4}\) hay min \(P=\frac{13}{4}\) khi \(\begin{cases}z=3\\x=y=1\end{cases}\)

NV
14 tháng 5 2020

\(H=\sum\frac{y}{x^2+1+2y+2}\le\sum\frac{y}{2x+2y+2}=\frac{1}{2}\sum\frac{y}{x+y+1}\)

Ta sẽ chứng minh \(H\le\frac{1}{2}\) hay \(\frac{y}{x+y+1}+\frac{z}{y+z+1}+\frac{x}{z+x+1}\le1\)

\(\Leftrightarrow\frac{x+1}{x+y+1}+\frac{y+1}{y+z+1}+\frac{z+1}{z+x+1}\ge2\)

Thật vậy, ta có:

\(VT=\frac{\left(x+1\right)^2}{\left(x+1\right)\left(x+y+1\right)}+\frac{\left(y+1\right)^2}{\left(y+1\right)\left(y+z+1\right)}+\frac{\left(z+1\right)^2}{\left(z+1\right)\left(z+x+1\right)}\)

\(VT\ge\frac{\left(x+y+z+3\right)^2}{\left(x+1\right)\left(x+y+1\right)+\left(y+1\right)\left(y+z+1\right)+\left(z+1\right)\left(z+x+1\right)}\)

\(VT\ge\frac{\left(x+y+z+3\right)^2}{x^2+y^2+z^2+xy+yz+zx+3x+3y+3z+3}=\frac{\left(x+y+z+3\right)^2}{\frac{1}{2}\left(x^2+y^2+z^2\right)+xy+yz+zx+3x+3y+3z+3+\frac{1}{2}\left(x^2+y^2+z^2\right)}\)

\(VT\ge\frac{\left(x+y+z+3\right)^2}{\frac{1}{2}\left(x+y+z\right)^2+3\left(x+y+z\right)+3+\frac{3}{2}}=\frac{\left(x+y+z+3\right)^2}{\frac{1}{2}\left(x+y+z\right)^2+3\left(x+y+z\right)+\frac{9}{2}}\)

\(VT\ge\frac{\left(x+y+z+3\right)^2}{\frac{1}{2}\left(x+y+z+3\right)^2}=2\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

19 tháng 8 2020

Bài này có cách lập bảng biến thiên,nhưng mình sẽ làm cách đơn giản

Từ giả thiết \(x^2+y^2+z^2=1\Rightarrow0< x,y,z< 1\)

Áp dụng Bất Đẳng Thức Cosi cho 3 cặp số dương \(2x^2;1-x^2;1-x^2\)

\(\frac{2x^2+\left(1-x^2\right)+\left(1-x^2\right)}{3}\ge\sqrt[3]{2x^2\left(1-x^2\right)^2}\le\frac{2}{3}\)

\(\Leftrightarrow x\left(1-x^2\right)\le\frac{2}{3\sqrt{3}}\Leftrightarrow\frac{x}{1-x^2}\ge\frac{3\sqrt{3}}{2}x^2\Leftrightarrow\frac{x}{y^2+z^2}\ge\frac{3\sqrt{3}}{2}x^2\left(1\right)\)

Tương tự ta có \(\hept{\begin{cases}\frac{y}{z^2+x^2}\ge\frac{3\sqrt{3}}{2}y^2\left(2\right)\\\frac{z}{x^2+y^2}\ge\frac{3\sqrt{3}}{2}z^2\left(3\right)\end{cases}}\)

Cộng các vế (1), (2) và (3) ta được \(\frac{x}{y^2+z^2}+\frac{y}{z^2+x^2}+\frac{z}{x^2+y^2}\ge\frac{3\sqrt{3}}{2}\left(x^2+y^2+z^2\right)=\frac{3\sqrt{3}}{2}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{\sqrt{3}}{3}\)