K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 8

Ta có:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)-1\)

\(\ge\left(a+b+c\right).3\sqrt[3]{ab.bc.ca}-1\)

\(=3\left(a+b+c\right)-1\)

\(=\dfrac{7}{3}\left(a+b+c\right)+\dfrac{2}{3}\left(a+b+c\right)-1\)

\(\ge\dfrac{7}{3}\left(a+b+c\right)+\dfrac{2}{3}.3\sqrt[3]{abc}-1\)

\(=\dfrac{7}{3}\left(a+b+c\right)+1\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
14 tháng 9 2021

\(\dfrac{a^3}{1+b}+\dfrac{1+b}{4}+\dfrac{1}{2}\ge3\sqrt[3]{\dfrac{a^3\left(1+b\right)}{8\left(a+b\right)}}=\dfrac{3a}{2}\)

\(\dfrac{b^3}{1+c}+\dfrac{1+c}{4}+\dfrac{1}{2}\ge\dfrac{3b}{2}\) ; \(\dfrac{c^3}{1+a}+\dfrac{1+a}{4}+\dfrac{1}{2}\ge\dfrac{3c}{2}\)

\(\Rightarrow VT+\dfrac{a+b+c}{4}+\dfrac{9}{4}\ge\dfrac{3}{2}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\dfrac{5}{4}\left(a+b+c\right)-\dfrac{9}{4}\ge\dfrac{5}{4}.3\sqrt[3]{abc}-\dfrac{9}{4}=\dfrac{3}{2}\)

AH
Akai Haruma
Giáo viên
27 tháng 9 2018

Lời giải:

Từ \(a+b+c\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Rightarrow a+b+c\geq \frac{ab+bc+ac}{abc}\Rightarrow abc(a+b+c)\geq ab+bc+ac\)

\(\Rightarrow a^2b^2c^2(a+b+c)^2\geq (ab+bc+ac)^2(1)\)

Áp dụng BĐT AM-GM:
\(a^2b^2+b^2c^2\geq 2ab^2c\)

\(b^2c^2+c^2a^2\geq 2abc^2\)

\(a^2b^2+c^2a^2\geq 2a^2bc\)

Cộng theo vế, rút gọn \(\Rightarrow a^2b^2+b^2c^2+c^2a^2\geq abc(a+b+c)\)

\(\Rightarrow (ab+bc+ac)^2\geq 3abc(a+b+c)(2)\)

Từ \((1);(2)\Rightarrow a^2b^2c^2(a+b+c)^2\geq 3abc(a+b+c)\)

\(\Rightarrow abc(a+b+c)\geq 3\Rightarrow a+b+c\geq \frac{3}{abc}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

NV
18 tháng 1 2022

\(\Leftrightarrow\left(1+abc\right)\left(\dfrac{1}{a\left(1+b\right)}+\dfrac{1}{b\left(1+c\right)}+\dfrac{1}{c\left(1+a\right)}\right)\ge3\)

Ta có:

\(\left(1+abc\right).\dfrac{1}{a\left(1+b\right)}=\dfrac{1+abc}{a+ab}=\dfrac{1+a+ab+abc-a-ab}{a+ab}=\dfrac{1+a}{a\left(1+b\right)}+\dfrac{b\left(1+c\right)}{1+b}-1\)

\(\Rightarrow VT=\dfrac{1+a}{a\left(1+b\right)}+\dfrac{b\left(1+c\right)}{1+b}+\dfrac{1+b}{b\left(1+c\right)}+\dfrac{c\left(1+a\right)}{1+c}+\dfrac{1+c}{c\left(1+a\right)}+\dfrac{a\left(1+b\right)}{1+a}-3\)

\(VT\ge6\sqrt[6]{\dfrac{abc\left(1+a\right)^2\left(1+b\right)^2\left(1+c\right)^2}{abc\left(1+a\right)^2\left(1+b\right)^2\left(1+c\right)^2}}-3=3\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
3 tháng 8 2021

Do \(abc=1\Rightarrow\) đặt \(\left(a;b;c\right)=\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\)

\(VT=\dfrac{xz}{y\left(x+z\right)}+\dfrac{xy}{z\left(x+y\right)}+\dfrac{yz}{x\left(y+z\right)}=\dfrac{\left(xz\right)^2}{xyz\left(x+z\right)}+\dfrac{\left(xy\right)^2}{xyz\left(x+y\right)}+\dfrac{\left(yz\right)^2}{xyz\left(y+z\right)}\)

\(VT\ge\dfrac{\left(xy+yz+zx\right)^2}{2xyz\left(x+y+z\right)}\ge\dfrac{3xyz\left(x+y+z\right)}{2xyz\left(x+y+z\right)}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c=1\)

NV
27 tháng 7 2021

Đặt \(\left(a;b;c\right)=\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)\Rightarrow xyz=1\)

\(P=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

AH
Akai Haruma
Giáo viên
28 tháng 11 2018

Lời giải:
Áp dụng BĐT Cauchy-Schwarz và AM-GM ta có:

\(\text{VT}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+abc(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})+\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)

\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+(ab+bc+ac)+\frac{a^2}{ab}+\frac{b^2}{bc}+\frac{c^2}{ac}\)

\(\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+(ab+bc+ac)+\frac{(a+b+c)^2}{ab+bc+ac}\)

\(\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+2\sqrt{(ab+bc+ac).\frac{(a+b+c)^2}{ab+bc+ac}}\)

\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+2(a+b+c)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+a+b+c+(a+b+c)\)

\(\geq 6\sqrt[6]{\frac{1}{a}.\frac{1}{b}.\frac{1}{c}.a.b.c}+(a+b+c)=6+a+b+c\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

10 tháng 8 2018

\(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(a+c\right)}+\dfrac{1}{c^3\left(a+b\right)}\)

\(=\dfrac{abc}{a^3\left(b+c\right)}+\dfrac{abc}{b^3\left(a+c\right)}+\dfrac{abc}{c^3\left(a+b\right)}\)

\(=\dfrac{bc}{a^2\left(b+c\right)}+\dfrac{ac}{b^2\left(a+c\right)}+\dfrac{ab}{c^2\left(a+b\right)}\)

\(=\dfrac{b^2c^2}{a^2bc\left(b+c\right)}+\dfrac{a^2c^2}{ab^2c\left(a+c\right)}+\dfrac{a^2b^2}{abc^2\left(a+b\right)}\)

\(Cauchy-Schwarz:\)

\(VT\ge\dfrac{\left(bc+ac+ab\right)^2}{abc\left[a\left(b+c\right)+b\left(a+c\right)+c\left(a+b\right)\right]}\)

\(=\dfrac{\left(bc+ac+ab\right)^2}{2\left(ab+bc+ca\right)}=\dfrac{ab+bc+ca}{2}\)

\(AM-GM:\)

\(ab+bc+ca\ge\sqrt[3]{\left(abc\right)^2}=3\)

\(\Rightarrow VT\ge\dfrac{ab+bc+ca}{2}\ge\dfrac{3}{2}\)

\("="\Leftrightarrow a=b=c=1\)

AH
Akai Haruma
Giáo viên
10 tháng 8 2018

Lời giải khác:

Áp dụng BĐT AM-GM:

\(\frac{1}{a^3(b+c)}+\frac{a(b+c)}{4}\geq 2\sqrt{\frac{1}{4a^2}}=\frac{1}{a}=\frac{abc}{a}=bc\)

\(\frac{1}{b^3(a+c)}+\frac{b(a+c)}{4}\geq 2\sqrt{\frac{1}{4b^2}}=\frac{1}{b}=\frac{abc}{b}=ac\)

\(\frac{1}{c^3(a+b)}+\frac{c(a+b)}{4}\geq 2\sqrt{\frac{1}{4c^2}}=\frac{1}{c}=\frac{abc}{c}=ab\)

Cộng theo vế và rút gọn:

\(\Rightarrow \frac{1}{a^3(b+c)}+\frac{1}{b^3(a+c)}+\frac{1}{c^3(a+b)}+\frac{ab+bc+ac}{2}\ge ab+bc+ac\)

\(\Rightarrow \frac{1}{a^3(b+c)}+\frac{1}{b^3(a+c)}+\frac{1}{c^3(a+b)}\geq \frac{ab+bc+ac}{2}\geq \frac{3\sqrt[3]{a^2b^2c^2}}{2}=\frac{3}{2}\) (AM_GM)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$