Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMND có
AM//ND
AM=ND
Do đó: AMND là hình bình hành
Xét tứ giác MBCN có
MB//CN
MB=CN
Do đó: MBCN là hình bình hành
b: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
a) Ta có:
M là trung điểm AB
N là trung điểm CD
=> MN là đường trung bình hình bình hành ABCD
=> MN//AD//BC
Xét tứ giác AMND có:
MN//AD
AM//DN
=> AMND là hình bình hành
Xét tứ giác MBCN có:
MN//BC
MB//NC
=> MBCN là hình bình hành
b) Xét tứ giác AMCN có:
\(AM=\dfrac{1}{2}AB\)(M là trung điểm AB)
\(CN=\dfrac{1}{2}CD\)(N là trung điểm CD)
Mà AB=CD(ABCD là hình bình hành)
\(\Rightarrow AM=CN\)
Mà AM//CN(AB//CD,\(M\in AB,N\in CD\))
=> AMCN là hình bình hành
a: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
a: Xét tứ giác AMCN có
AM//CN
AM=CN
=>AMCN là hình bình hành
Xét tứ giác AMND có
AM//ND
AM=ND
AM=AD
=>AMND là hình thoi
b: AMND là hình thoi
=>I là trung điểm chung của AN và MD và AN vuông góc MD tại N
Xét tứ giác MBCN có
MB//CN
MB=CN
MB=BC
=>MBCN là hình thoi
=>MC vuông góc BN tại K và K là trung điểm chung của MC và BN
Xét ΔMDC có
MN là trung tuyến
MN=DC/2
=>ΔMDC vuông tại M
Xét tứ giác MINK có
góc MIN=góc MKN=góc IMK=90 độ
=>MINK là hình chữ nhật
c: Xét ΔMDC có MI/MD=MK/MC
nên IK//DC
a)Ta có O giao điểm AC và BD trong hình bình hành ABCD (gt)
=> O là trung điểm AC và BD.
=> OD=OB
Mà OM=MD=\(\frac{1}{2}\)OD; ON=BN=\(\frac{1}{2}\)OB => OM=ON=OD=OB.
Xét hình bình hành ABCD có O trung điểm AC (hbh ABCD) và O trung điểm MN (OM=ON)
=> đpcm (điều phải chứng minh)
b) C/m tam giác ACE=ACF (cgc)(AC chung; \(\angle EAC=\angle FCA\) do song song; và cũng như vây với \(\angle ECA=\angle CAF\))
=>AE=FC mà \(AE \parallel FC\) do ăn theo hbh AMCN => đpcm
a) Ta có : AB // CD ( do ABCD là hình bình hành )
\(\Rightarrow\)AM // NC \(\left(1\right)\)
Lại có : M là trung điểm của AB \(\Rightarrow AM=\frac{1}{2}AB\left(2\right)\)
N là trung điểm của DC \(\Rightarrow CN=\frac{1}{2}CD\left(3\right)\)
mà AB = CD ( ABCD là hình bình hành ) \(\left(4\right)\)
Từ \(\left(2\right);\left(3\right);\left(4\right)\Rightarrow AM=CN\left(5\right)\)
Từ \(\left(1\right);\left(5\right)\Rightarrow\)tứ giác AMCN là hình bình hành
b) Ta có : ABCD là hình bình hành (gt)
\(\Rightarrow\)AC cắt BD tại trung điểm của mỗi đường
\(\Rightarrow\)O là trung điểm của BD và O là trung điểm của AC (*)
Ta có : AMCN là hình bình hành (cma)
\(\Rightarrow\)AC cắt MN tại trung điểm của mỗi đường
\(\Rightarrow\)O là trụng điểm của MN (**)
Từ (*) ; (**) \(\Rightarrow\)AC ; BD ; MN đồng quy
c) Ta có : AM = CN (cmt)
mà \(CN=\frac{1}{2}DC\)(cmt)
\(\Rightarrow AM=\frac{1}{2}DC\)
\(\Rightarrow\)AM là đường trung bình của \(\Delta ECD\)
1>
có AB // CD và AB=CD , M,N là trung điểm của AB và CD nên AM // và = DN
suy ra AMND là hình bình hành
2.
có AM song song và bằng CN (vì cùng bằng một nửa AB hoặc CD)
Suy ra AMCN là hbh