Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chứng minh được \(FI;KE\) là đtb tam giác AGB;AGC
Do đó \(FI=KE=\dfrac{1}{2}AG;FI//KE\left(//AG\right)\)
Vậy FEKI là hbh
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔABC
Suy ra: ED//BC và \(ED=\dfrac{BC}{2}=2\left(cm\right)\)
Bài 1:
Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BC và \(DE=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
I là trung điểm của GB
K là trung điểm của GC
Do đó: IK là đường trung bình của ΔGBC
Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra DE//IK và DE=IK
Xét ΔABC có
N là trung điểm của AB
M là trung điểm của AC
Do đó: NM là đường trung bình của ΔBAC
Suy ra: NM//BC và \(NM=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
E là trung điểm của GB
F là trung điểm của GC
Do đó: EF là đường trung bình của ΔGBC
Suy ra: EF//BC và \(EF=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra NM//FE và NM=FE
hay NMFE là hình bình hành
a: Xét ΔABC có
N là trung điểm của AB
M là trung điểm của AC
Do đó: NM là đường trung bình của ΔABC
Suy ra: NM//BC
hay BCMN là hình thang
Lời giải:
Vì $E, F$ lần lượt là trung điểm của $AC, AB$ nên $EF$ là đường trung bình của tam giác $ABC$ ứng với cạnh $BC$
$\Rightarrow EF=\frac{1}{2}BC$ và $EF\parallel BC$ (1)
Vì $K, I$ lần lượt là trung điểm $GC, GB$ nên $KI$ là đtb của tam giác $GBC$ ứng với cạnh $BC$
$\Rightarrow KI=\frac{1}{2}BC$ và $KI\parallel BC$ (2)
Từ $(1); (2)$ suy ra $EF\parallel KI$ và $EF=KI$
Tứ giác $FEKI$ có 2 cạnh đối $EF, KI$ song song và bằng nhau nên là hbh. Ta có đpcm.
Hình vẽ: