Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=1.2+2.3+3.4+...+n(n+1)
=>3A=(3−0).1.2+(4−1).2.3+...+(n+2−n+1).n(n+1)
=>3A=1.2.3−0.1.2+2.3.4−1.2.3+...+n(n+1)(n+2)−(n−1)n(n+1)
=>3A=n(n+1)(n+2)
=>A=n(n+1)(n+2):3(đpcm)
\(\left(8x-3\right)^{2n}=5^{2n}\)
Do 2n chẵn
\(\Rightarrow\hept{\begin{cases}8x-3=5\\8x-3=-5\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=1\\x=-\frac{1}{4}\end{cases}}\)
Ta có :
\(A=n^6-n^4+2n^3+2n^2\)
\(A=n^4\left(n^2-1\right)+2n^2\left(n+1\right)\)
\(A=n^4\left(n+1\right)\left(n-1\right)+2n^2\left(n+1\right)\)
\(A=n^2\left(n+1\right).\left[n^2\left(n-1\right)+2\right]\)
\(A=n^2\left(n+1\right).\left(n^3-n^2+2\right)\)
\(A=n^2\left(n+1\right).\left(n^3+1+1-n^2\right)\)
\(A=n^2\left(n+1\right).\left(n+1\right).\left(n^2-n+1-n+1\right)\)
\(A=n^2\left(n+1\right)^2.\left(n^2-2n+2\right)\)
Với \(n\in N\), n > 1 thì \(n^2-2n+2=\left(n-1\right)^2+1>\left(n-1\right)^2\)
Và \(n^2-2n+2=n^2-2\left(n-1\right)< n^2\)
\(\Rightarrow\left(n-1\right)^2< n^2-2n+n< n^2\)
Vậy A không phải số chính phương
với \(n=0\) ta thấy nó thỏa mãn điều kiện bài toán
giả sử \(n=k\) thì ta có : \(5^{n+2}+26.5^n+8^{2n+1}=5^{k+2}+26.5^k+8^{2k+1}⋮59\)
khi đó nếu \(n=k+1\) thì ta có :
\(5^{n+2}+26.5^n+8^{2n+1}=5^{k+1+2}+26.5^{k+1}+8^{2k+2+1}\)\(=5.5^{k+2}+5.26.5^k+8^2.8^{2k+1}=5.5^{k+2}+5.26.5^k+5.8^{2k+1}+59.8^{2k+1}\)
\(=5\left(5^{k+2}+26.5^k+8^{2k+1}\right)+59.8^{2k+1}⋮59\)
\(\Rightarrow\left(đpcm\right)\)
Ta co n^2 chia 5 du 1 hoac du 4
=>n^4 chia 5 du 1 hoac du 4
\(\orbr{\begin{cases}n^4\equiv1\left(mod5\right)\\n^4\equiv4\left(mod5\right)\end{cases}}=>\orbr{\begin{cases}n^5\equiv n\left(mod5\right)\\n^4-4+5⋮5\end{cases}}\)\(=>\orbr{\begin{cases}n^5-n⋮5\\n^4\equiv1\left(mod5\right)\left(#\right)\end{cases}}\)
Theo (#) ta co:\(n^5\equiv n\left(mod5\right)\Rightarrow n^5-n⋮5\)
Vay n^5-n chia het cho 5