Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
\(y'=\frac{\left(\frac{1-x^2}{1+x^2}\right)'}{\frac{1-x^2}{1+x^2}}=\frac{\frac{-2x.\left(1+x^2\right)-2x.\left(1-x^2\right)}{\left(1+x^2\right)^2}}{\frac{1-x^2}{1+x^2}}=\frac{\frac{-4x}{\left(1+x^2\right)^2}}{\frac{1-x^2}{1+x^2}}=\frac{-4x}{\left(1+x^2\right)\left(1-x^2\right)}=\frac{-4x}{1-x^4}\)
ta có:
\(y'=\frac{\left(x+\sqrt{x^2+1}\right)'}{x+\sqrt{x^2+1}}=\frac{1+\frac{x}{\sqrt{x^2+1}}}{x+\sqrt{x^2+1}}=\frac{1+\frac{x}{\sqrt{x^2+1}}}{x+\sqrt{x^2+1}}=\frac{\frac{x+\sqrt{x^2+1}}{\sqrt{x^2+1}}}{x+\sqrt{x^2+1}}=\frac{1}{\sqrt{x^2+1}}\)
Đáp án B
Ta có: D = - 2 ; + ∞ và y ' = 1 x + 2 - 3 x + 2 2 = x - 1 x + 2 2 > 0 ⇔ x > 1
Do đó hàm số đã cho đồng biến trên khoảng 1 ; + ∞ .
Đáp án C
Đồ thị hàm số y = f'(x) không cắt trục hoành
Hay phương trình f'(x) = 0 vô nghiệm
Đáp án A
Ta có: ∫ 1 2 x 2 ln x d x = 1 3 ∫ 1 2 ln x d x 3 = x 3 ln x 3 1 3 − 1 3 ∫ 1 3 x 2 d x