K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2023

Lấy ngẫu nhiên từ mỗi túi 1 viên bi: \(C^1_5.C^1_9\) ( cách )

Trường hợp 1: Lấy ra từ mỗi túi 1 viên bi đỏ: 

\(C^1_3.C^1_4\) ( cách ) 

Trường hợp 2:  Lấy ra từ mỗi túi 1 viên bi xanh

\(C^1_2.C^1_5\) ( cách )

Xác suất lấy được 2 bi cùng màu là:   \(\dfrac{C^1_3.C^1_4+C^1_2.C^1_5}{C^1_5.C^1_9}=\dfrac{22}{45}\)

24 tháng 4 2023

Lấy ngẫu nhiên 1 bi từ các túi có :

\(TH1:\) Lấy 1 bi từ túi số 1 có 3 bi đỏ và 2 bi xanh có \(C^1_5\) cách

\(TH2:\) Lấy 1 bi từ túi số 2 có 4 bi đỏ, 5 bi xanh có \(C_9^1\) cách

Theo quy tắc cộng, ta có \(C_5^1+C_9^1=14\) cách lấy ngẫu nhiên 1 bi từ các túi.

Vậy \(n\left(\Omega\right)=14\)

Gọi \(A:``\) Lấy ra 2 bi cùng màu \("\)

\(TH1:\) Lấy ra mỗi túi 1 bi đỏ có \(C^1_3.C_4^1\) cách

\(TH2:\) Lấy ra mỗi túi 1 bi xanh có \(C_2^1.C_5^1\) cách

Theo quy tắc cộng, ta có \(C^1_3.C_4^1+C_2^1.C^1_5=22\)

\(\Rightarrow n\left(A\right)=22\)

Xác suất \(P\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{22}{14}=\dfrac{11}{7}\)

 

  

25 tháng 12 2016

Viên bi màu trắng

25 tháng 12 2016

bài này lp mí z

 

a: Số cách chọn là:

\(C^2_5\cdot C^1_4\cdot C^3_6+C^2_5\cdot C^2_4\cdot C^2_6=1700\left(cách\right)\)

b: Số cách chọn 9 viên bất kì là: \(C^9_{15}\left(cách\right)\)

Số cách chọn 9 viên ko có đủ 3 màu là:

\(C^9_9+C^9_{11}+C^9_{10}=66\left(cách\right)\)

=>Có 4939 cách

Số cách lấy ra là:

\(C^1_3\cdot C^3_9+C^2_3\cdot C^2_9+C^3_3\cdot C^1_9=369\left(cách\right)\)

12 tháng 4 2023

có thể chi tiết hơn dc kh ạ

1:Có hai chiếc hộp chứa bi. Hộp thứ nhất chứa 4 viên bị đỏ và 3 viên bi trắng, hộp thứ hai chứa 5 viên bị đỏ và 3 viên bị trắng. Lấy ngẫu nhiên từ mỗi hộp ra một viên. Có bao nhiêu được 2 viên bi cùng màu A.45 B.14 C.29 D.120 c2. Có bao nhiêu số hạng trong khai triển nhị thức ( x+3)^4 A.7 B.4 C.5 D.6 C3: có bao nhiêu số nguyên m thuộc nửa khoảng [-2020,2021) để phương trình √2x²-2x-m = x-2 có...
Đọc tiếp

1:Có hai chiếc hộp chứa bi. Hộp thứ nhất chứa 4 viên bị đỏ và 3 viên bi trắng, hộp thứ hai chứa 5 viên bị đỏ và 3 viên bị trắng. Lấy ngẫu nhiên từ mỗi hộp ra một viên. Có bao nhiêu được 2 viên bi cùng màu A.45 B.14 C.29 D.120 c2. Có bao nhiêu số hạng trong khai triển nhị thức ( x+3)^4 A.7 B.4 C.5 D.6 C3: có bao nhiêu số nguyên m thuộc nửa khoảng [-2020,2021) để phương trình √2x²-2x-m = x-2 có nghiệm A.2020 B.2017 C.2018 D.2019 C4: Trong mặt phẳng tọa độ oxy ,hai điểm l (-1,2);A (1,-1).Phương trình đường tròn tâm l và đi qua điểm A là : A.(x+1)^2+(y-1)^2=13 B.(X+1)^2+(Y-2)^2=13 C.(X-1)^2+(Y+2)^2=5 D.(X-1)^2+(Y+2)^3=20 C5: Trong mặt phẳng tọa độ oxy,đường thẳng 🔺️:2x-y+2023=0 có một véc tơ pháp tuyến là A.n=(1;2) B.n(2;1) C.n=(4;2) D.n=(-2;1)

Giúp vs b

1

5D

4B

3A

2C

12 tháng 5 2023

Thịnh ơi câu 1 kia?

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Số cách để Hà chọn ra đúng 2 viên bi khác màu là: 5. 7 = 35 (cách)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Tổng số khả năng có thể xảy ra của phép thử là \(n\left( \Omega  \right) = C_7^2.C_7^2 = 441\)

a) Biến cố “Bốn viên bi lấy ra có cùng màu” xảy ra khi mỗi lần lấy từ 2 hộp đều là hai viên bi xạnh hoặc hai viên bi đỏ. Số kết quả thuận lợi cho biến cố là \(C_4^2.C_5^2 + C_3^2.C_2^2 = 63\)

Vậy xác suất của biến cố “Bốn viên bi lấy ra có cùng màu” là \(P = \frac{{63}}{{441}} = \frac{1}{7}\)

b) Số kết quả thuận lợi cho biến cố “Trong 4 viên bi lấy ra có đúng 1 viên bi xanh” là \(C_4^1.C_3^1.C_2^2 + C_3^2.C_5^1.C_2^1 = 42\)

Vậy xác suất của biến cố “Trong 4 viên bi lấy ra có đúng 1 viên bi xanh” là: \(P = \frac{{42}}{{441}} = \frac{2}{{21}}\)

c) Gọi là biến cố “Trong 4 viên bi lấy ra có đủ cả bi xanh và bi đỏ”, ta có biến cố đối là \(\overline A \): “4 viên bi lấy ra chỉ có một màu”

\(\overline A \) xảy ra khi 2 lần lấy ra đều được các viên bi cùng màu xanh hoặc cùng màu đỏ

Từ câu a) ta có xác suất của biến cố \(\overline A \) là \(P\left( {\overline A } \right) = \frac{1}{7}\)

Suy ra, xác suất của biến cố là \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{1}{7} = \frac{6}{7}\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

\(\overline A \) là biến cố: “Trong 4 viên bi chỉ có toàn bi đỏ hoặc bi xanh”.

Ta có \(n\left( \Omega  \right) = C_{10}^4 = 210\) và \(n\left( {\overline A } \right) = C\;_4^4 + C\;_6^4 = 16.\)

Do đó \(P\left( {\overline A } \right) = \frac{{16}}{{210}}=\frac{{8}}{{105}} \).

Suy ra \(P\left( A \right) = 1 - \frac{{8}}{{105}} = \frac{{97}}{{105}}\).

Chọn C