Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3. Xét tam giác ADM và tam giác AEM có :
góc ADM = góc AEM = 90 độ
Góc BAM = góc CAM (gt)
AM chung
=>Tam giác ADM = tam giác AEm (c.huyền - g.nhọn)
=>MD = ME (cặp cạnh t/ứng )
AD = AE (cặp cạnh t/ứng )
Xét tam giác MDB và tam giác MEC có :
MB = MC (gt)
góc MDB = góc MEC = 90 độ
MD = ME ( câu a)
=>Tam giác MDB = Tam giác MEC (c.huyền-c.g.vuông)
Vì AD + DB = AB
AE + EC = AC
Mà AD = AE
DB = EC
=>AB = AC
Xét tam giác ABM và tam giác ACM có
AM chung
góc BAM = góc CAM (gt)
AB = AC (CMT)
=>Tam giác ABM = Tam giác ACM (c.huyền-g.nhon)
Vậy có 3 cặp tam giác bằng nhau
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
BD=CE
\(\widehat{ABD}=\widehat{ACE}\)
Do đó: ΔABD=ΔACE
Suy ra: AB=AC
hay ΔABC cân tại A
b: XétΔABC có
AD là đường cao
CH là đường cao
AD cắt CH tại D
Do đó: D là trực tâm của ΔABC
=>BD vuông góc với AC
\(\left\{{}\begin{matrix}\widehat{CBA}< 135\Rightarrow\widehat{ABD}>45\Rightarrow\widehat{BAD}< 45\Rightarrow BD< DA\\\widehat{ACD}< 45\Rightarrow\widehat{CAD}>45\Rightarrow AD< CD\\\end{matrix}\right.\)
Làm toán hình thì phải lập luận rõ ràng, trong toán hình cái điểm lập luận là cao nhất, nếu không có thì 0 điểm, chế làm như vậy có phải đẩy người ta xuống 0 điểm không? Làm ơn bỏ ngay cái ngoặc tròn (và) của lớp 8 đi!
Ban chi mk cach tim gia tri nho nhat / lon nhat cho mk nha
Giải:
Gọi số tiền thưởng của người thứ 1, 2, 3 là a, b, c
Ta có: \(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}\) và a + b = 7,2 ( triệu đồng)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b}{3+5}=\dfrac{7,2}{8}=0,9\)
\(\Rightarrow\left\{{}\begin{matrix}a=2,7\\b=4,5\\c=6,3\end{matrix}\right.\)
Vậy người 1 có số tiền thưởng là 2,7 triệu đồng
người 2 có số tiền thưởng là 4,5 triệu đồng
người thứ 3 có số tiền thưởng là 6,3 triệu đồng
Gọi số tiền thưởngcủa ba công nhân 1, 2, 3 lần lượt là a, b, c.
Theo đề bài, ta có : \(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}\)và a + b = 7,2 (triệu đồng)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b}{3+5}=\dfrac{7,2}{8}=0,9\)
Từ \(\dfrac{a}{3}=0,9\Rightarrow a=0,9\times3=2,7\)
\(\dfrac{b}{5}=0,9\Rightarrow b=0,9\times5=4,5\)
\(\dfrac{c}{7}=0,9\Rightarrow c=0,9\times7=6,3\)
Vậy số tiền được thưởng của người thứ nhất là 2,7 triệu đồng, số tiền được thưởng của người thứ hai là 4,5 triệu đồng, số tiền được thưởng của người thứ ba là 6,3 triệu đồng.
Tổng số tiền được thưởng của cả ba người là : 2,7 + 4,5 + 6, 3 = 13,5 triệu đồng.
b: |2x-1|<5
=>2x-1>-5 và 2x-1<5
=>2x>-4 và 2x<6
=>-2<x<3
mà x là số nguyên dương
nên \(x\in\left\{1;2\right\}\)
Từ \(\dfrac{9x}{4}\)=\(\dfrac{16}{x}\)
9x\(^2\)=4*16=69
=>x\(^2\)=69/9=\(\dfrac{64}{9}\)
=>x=\(\dfrac{-8}{3}\)
Gọi độ dài các cạnh lần lượt là x, y, z
Trong một tam giác, độ dài đường cao tỉ lệ nghịch với độ dài cạnh nên ta có:
\(x\div y\div z=\dfrac{1}{12}\div\dfrac{1}{15}\div\dfrac{1}{20}\)
\(\Rightarrow\dfrac{x}{\dfrac{1}{12}}=\dfrac{y}{\dfrac{1}{15}}=\dfrac{z}{\dfrac{1}{20}}\)
\(\Rightarrow12x=15y=20z\)
\(12x=15y\Rightarrow\dfrac{x}{15}=\dfrac{y}{12}\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}\) (1)
\(15y=20z\Rightarrow\dfrac{y}{20}=\dfrac{z}{15}\Rightarrow\dfrac{y}{4}=\dfrac{z}{3}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y+z}{5+4+3}=\dfrac{60}{12}=5\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=5\Rightarrow x=5\cdot5=25\\\dfrac{y}{4}=5\Rightarrow y=5\cdot4=20\\\dfrac{z}{3}=5\Rightarrow z=5\cdot3=15\end{matrix}\right.\)
Vậy ...
Hình tự vẽ.
a, \(Xét\text{ }\)\(\text{△}ADC\) \(và\) \(\text{△}AEB\) \(có:\)
\(AD=AE\left(gt\right)\)
\(\widehat{A}\) \(Chung\) ⇒ \(\text{△}ADC\) = \(\text{△}AEB\)
\(AB=AC\left(gt\right)\) (c.g.c)
⇒ BE=CD(2 cạnh t.ứ)
b, Có \(\text{△}ADC\) = \(\text{△}AEB\)
⇒ \(\widehat{ACD}=\widehat{ABE}\)
Có AB=AC
Mà AD=AE
⇒ AB-AD=AC-AE
⇒ BD=CE
Xét △\(KBD\) và △\(KCE\) có
\(\widehat{KBD}=\widehat{KCE}\) (cmt)
BD=CE(cmt)
\(\widehat{KDB}=\widehat{KEC}\) ( Do \(\widehat{KBD}=\widehat{KCE}\) , \(\widehat{DKB}=\widehat{EKC}\)(đđ) )
⇒ △\(KBD\) = △\(KCE\)
c,