Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(f\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5\)
\(g\left(x\right)=x^4+3x^3-\frac{2}{3}x^2-2x-10\)
b) \(f\left(x\right)+g\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5+x^4+3x^3-\frac{2}{3}x^2-2x-10\)
\(=6x^3-x^2-5\)
c) +) Thay x=1 vào đa thức f(x) + g(x) ta được :
\(6.1^3-1^2-5=0\)
Vậy x=1 là nghiệm của đa thức f(x) + g(x)
+) Thay x=-1 vào đa thức f(x) + g(x) ta được :
\(6.\left(-1\right)^3-\left(-1\right)^2-5=-10\)
Vậy x=-1 ko là nghiệm của đa thức f(x) + g(x)
trước các hạng tử có dấu gì thì đó chính là dấu của hạng từ
nếu hạng tử đầu tiên của đa thức không có dấu đằng trước, ta ngầm hiểu hạng tử đó mang dấu dương
quy tắc đổi dấu: khi cộng 2 đa thức thì giữ nguyên dấu các hạng tử của cả 2 đa thức và thực hiện cộng các đa thức cùng phần biến
khi trừ 2 đa thức thì giữ nguyên dấu các hạng tử của đa thức bị trừ, còn lại đổi dấu tất cả các hạng tử của đa thức trừ sau khi bỏ dấu ngoặc
thế này được chưa bạn
*Đa thức \(B=-4x^3-2x^2-2+2x\left(3+x\right)-9x+2x^3\)
Ta có: \(B=-4x^3-2x^2-2+2x\left(3+x\right)-9x+2x^3\)
\(=-2x^3-2x^2-2+6x+2x^2-9x\)
\(=-2x^3-3x-2\)
*Đa thức \(C=x^3-2x\left(3x-1\right)+4\)
Ta có: \(C=x^3-2x\left(3x-1\right)+4\)
\(=x^3-6x^2+2x+4\)
\(\left(7x-3x^2y+\frac{1}{2}\right)-N=2xy-3x^2y+\frac{1}{3}x-2\)
\(N=\left(7x-3x^2y+\frac{1}{2}\right)-\left(2xy-3x^2y+\frac{1}{3}x-2\right)\)
\(N=7x-3x^2y+\frac{1}{2}-2xy+3x^2y-\frac{1}{3}x+2\)
\(N=\left(7-\frac{1}{3}\right)x+\left(3x^2y-3x^2y\right)-2xy+\left(\frac{1}{2}+2\right)\)
\(N=\frac{20}{3}x+0-2xy+\frac{5}{2}\)
\(N=\frac{20}{3}x-2xy+\frac{5}{2}\)
Thay x = -1 ; y = 1/2 vào N ta được :
\(N=\frac{20}{3}\left(-1\right)-2\left(-1\right)\cdot\frac{1}{2}+\frac{5}{2}\)
\(N=\frac{-20}{3}-\left(-1\right)+\frac{5}{2}\)
\(N=\frac{-20}{3}+1+\frac{5}{2}\)
\(N=\frac{-19}{6}\)
Vậy giá trị của N = -19/6 khi x = -1 ; y = 1/2
A(1/2) = a.(1/2)2 + 5. 1/2 - 3 = 0
=> a. 1/4 + 5/2 - 3 = 0
=> a.1/4 + 5/2 = 3
=> a. 1/4 = 3 - 5/2
=> a. 1/4 = 1/2
=> a = 1/2 : 1/4
=> a = 2
\(=4x^3y^5z^3\) bậc của đơn thức này là:11
HT
Ta có đơn thức:
\(\left(20x\right).\left(xy^2\right).\frac{1}{5}\)\(xy^3z^3\)
\(=\left(20.\frac{1}{5}\right)\left(xxx\right)\left(y^3y^3\right)z^3\)
\(=4x^3y^5z^3\)
+ Hệ số : \(4\)
+ Phần biến : \(x^3y^5z^3\)
+ Bậc của đa thức : \(3+5+3=11\)
Viết đa thức P(x) = 5x3 – 4x2 + 7x - 2 dưới dạng:
a) Tổng của hai đa thức một biến.
5x3 – 4x2 + 7x - 2 = (5x3 – 4x2) + (7x - 2)
b) Hiệu của hai đa thức một biến.
5x3 – 4x2 + 7x - 2 = (5x3 + 7x) - (4x2 + 2)
Chú ý: Đáp số ở câu a; b không duy nhất, các bạn có thể tìm thêm đa thúc khác.
Bạn Vinh nói đúng: Ta có thể viết đa thức đã cho thành tổng của hai đa thúc bậc 4 chẳng hạn như:
5x3 – 4x2 + 7x - 2 = (2x4 + 5x3 + 7x) + (– 2x4 – 4x2 - 2).
a) Ta có thể viết đa thức 5x3−4x2+7x−2 thành tổng của hai đa thức như sau:
5x3−4x2+7x−2 = 5x3+(−4x2+7x−2)
b)Hiệu của hai đa thức:
5x3−4x2+7x−2=5x3−(4x2−7x+2)
*Bạn Vinh nêu nhận xét : " Ta có thể viết đa thức đã cho thành tổng của hai đa thức bậc 4" là đứng.
Vì,chẳng hạn:
5x3−4x2+7x−2=(x4+4x3−3x2+7x−2)+(−x4+x3−x2)
Bạn dựa theo công thức này nhé:
Nếu a<0 và b<0 thì ab>0
Nếu a<0 và b>0(nói chung là a,b khác dấu) thì ab<0
Nếu a>0 và b>0 thì ab>0
Tức là bạn phải xem hệ số của các đơn thức đó là âm hay dương xong mới kết luận được
Nếu có n só âm và m số dương thì
Nếu n là số chẵn thì chắc chắn hệ số tổng là số dương
Nếu n là số lẻ thì chắc chắn hệ số tổng là số âm
Bạn tích đúng cho mình đã r vào nhắn tiin mik giảng cho 😊
trước các hạng tử có dấu gì thì đó chính là dấu của hạng từ nếu hạng tử đầu tiên của đa thức không có dấu đằng trước, ta ngầm hiểu hạng tử đó mang dấu dương quy tắc đổi dấu: khi cộng 2 đa thức thì giữ nguyên dấu các hạng tử của cả 2 đa thức và thực hiện cộng các đa thức cùng phần biến khi trừ 2 đa thức thì giữ nguyên dấu các hạng tử của đa thức bị trừ, còn lại đổi dấu tất cả các hạng tử của đa thức trừ sau khi bỏ dấu ngoặc thế này được chưa bạn