
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bất đẳng thức Cosi là bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của 2 số thực a, b không âm: a+b2≥ab−−√
Dấu bằng xảy ra khi và chỉ khi a = b
rồi với 3 số thực a, b, c không âm: a+b+c3≥abc−−−√3
Dấu bằng xảy ra khi và chỉ khi a = b = c
rồi với 4 số thực a, b, c, d không âm: a+b+c+d4≥abcd−−−−√4
Dấu bằng xảy ra khi và chỉ khi a = b = c = d
Với n số thức không âm x1,x2,x3,…xn: x1+x2+x3+…+xnn≥x1x2x3…xn−−−−−−−−−−√n
Dấu bằng xảy ra khi và chỉ khi x1=x2=x3=…=xn

bất đẳng thức cosi là khái niệm dùng để chỉ bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm. Trong đó, trung bình cộng của n số thực không âm luôn lớn hơn hoặc bằng trung bình nhân của chúng
Hệ quả 1: Nếu tổng hai số dương không đổi thì tích của chúng lớn nhất khi hai số đó bằng nhau Hệ quả 2: Nếu tích hai số dương không đổi thì tổng của hai số này nhỏ nhất khi hai số đó bằng nhau

C3
Đặt \(S=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
\(M=\frac{b}{b+c}+\frac{c}{c+a}+\frac{a}{a+b}\)
\(N=\frac{c}{b+c}+\frac{a}{c+a}+\frac{b}{a+b}\)
Ta có : \(M+N=\left(\frac{b}{b+c}+\frac{c}{c+a}+\frac{a}{a+b}\right)+\left(\frac{c}{b+c}+\frac{a}{c+a}+\frac{b}{a+b}\right)\)
\(=\left(\frac{b}{b+c}+\frac{c}{b+c}\right)+\left(\frac{c}{c+a}+\frac{a}{c+a}\right)+\left(\frac{a}{a+b}+\frac{b}{a+b}\right)\)
\(=\frac{b+c}{b+c}+\frac{c+a}{c+a}+\frac{a+b}{a+b}=1+1+1=3\)
Ta có :\(+)M+S=\frac{b}{b+c}+\frac{c}{c+a}+\frac{a}{a+b}+\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(=\frac{b+a}{b+c}+\frac{c+b}{c+a}+\frac{a+c}{b+a}\)
Hoàn toàn tương tự :\(+)N+S=\frac{a+c}{b+c}+\frac{b+a}{c+a}+\frac{b+c}{b+a}\)
Áp dụng Bất đẳng thức Cauchy cho 2 số không âm ta được :
\(\frac{b+a}{b+c}+\frac{c+b}{c+a}+\frac{a+c}{b+a}\ge3\sqrt[3]{\frac{\left(b+a\right)\left(c+b\right)\left(a+c\right)}{\left(b+c\right)\left(c+a\right)\left(b+a\right)}}=3\)
\(\frac{a+c}{b+c}+\frac{b+a}{c+a}+\frac{b+c}{b+a}\ge3\sqrt[3]{\frac{\left(a+c\right)\left(b+a\right)\left(b+c\right)}{\left(b+c\right)\left(c+a\right)\left(b+a\right)}}=3\)
Cộng theo vế các bất đẳng thức cùng chiều ta được :
\(M+N+2S\ge3+3=6\)
\(< =>3+2S\ge6< =>2S\ge6-3=3< =>S\ge\frac{2}{3}\)
Vậy ta có điều phải chứng minh
\(P=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{b+a}=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}-3\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)-3\)
\(\ge\left(a+b+c\right)\frac{9}{b+c+a+c+a+b}-3\)
\(=\frac{9}{2}-3=\frac{3}{2}\)
Dấu "=" xảy ra <=> a = b = c