K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2018

thu02ngan10 đề phải là tìm GTNN nhé

Đặt \(A=x^2+5\)

Vì \(x^2\ge0\forall x\)nên \(A\ge0+5=5\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x^2=0\Leftrightarrow x=0\)

Vậy \(A_{min}=5\Leftrightarrow x=0\)

29 tháng 12 2018

Thế bạn Trần Thanh Phương có biết phương pháp tìm GTLN

23 tháng 9 2021

Ta có: \(E=5+\left(1-x\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

              \(=5-\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

              \(=5-\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

              \(=5-\left(x^2+5x-6\right)\left(x^2+5x-6\right)\)

Đặt \(t=x^2+6x\)

   \(\Rightarrow E=5+\left(t-6\right)\left(t+6\right)\)

            \(=5+t^2-36\)

            \(=t^2-31\)

Mà \(t^2\ge0\Rightarrow t^2-31\ge-31\)

              \(\Rightarrow E\ge-31\)

Dấu "=" xảy ra \(\Leftrightarrow t^2=0\Leftrightarrow t=0\Leftrightarrow x^2+6x=0\Leftrightarrow x\left(x+6\right)=0\)

                                                                              \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)

23 tháng 9 2021

\(E=5+\left(1-x\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\\ E=5-\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\\ E=5-\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

Cách 1: \(E=5-\left(x^2+5x\right)^2+36=-\left(x^2+5x\right)^2+41\le41\)

\(E_{max}=41\Leftrightarrow x^2+5x=0\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=0\end{matrix}\right.\)

Cách 2: Đặt \(x^2+5x=t\)

\(\Leftrightarrow E=5-\left(t+6\right)\left(t-6\right)=5-t^2+36=-t^2+41\le41\\ E_{max}=41\Leftrightarrow t=0\Leftrightarrow x^2+5x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

 

27 tháng 9 2015

Ta có :

|x - 1/2| > 0

Vậy GTNN của |x - 1/2| = 0 <=> x - 1/2 = 0 <=> x = 1/2

\(6-2\left|1+3x\right|\le6\)'

Max \(A=6\Leftrightarrow1+3x=0\)

\(\Rightarrow3x=-1\)

\(\Rightarrow x=\frac{-1}{3}\)

\(\left|x-2\right|+\left|x-5\right|\ge0\)

Max \(B=0\Leftrightarrow\hept{\begin{cases}x-2=0\\x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}}\)

15 tháng 8 2016

A= 6-2|1+3x|

Amax khi và chỉ khi 2-/1+3x/min.Vì /1+3x/luôn lớn hơn hoạc bằng 0 mà 2/1-3x/min khi /1-3x/min.

=>để 2/1-3x/min thì /1-3x/=0 khi đó thì 2/1-3x/=0.A= 6-2|1+3x|=6-0=6

Vậy Amax= 6