Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Gọi cạnh tam giác đều là a => đường cao h =\(\frac{a\sqrt{3}}{2}\)=
mà h = 3/2R => \(\frac{a\sqrt{3}}{2}\)=\(\frac{3}{2}.\frac{4}{3}\) =2=> a =\(\frac{4}{\sqrt{3}}\)
S =ah/2 =\(\frac{4}{\sqrt{3}}\).2/2 =\(\frac{4}{\sqrt{3}}\)
2) ABC vuông tại A ( 62+82 =102)
M là điểm chính giữa => AM =CM => OM là trung trực AC => Tam giác OIC vuông tại I
=> OI = \(\sqrt{OC^2-IC^2}=\sqrt{5^2-4^2}=3\)
câu 2 ; theo đề bài ta có tam giác ABC vuông tại A
VÌ OM là đường kính đi qua dây AC nên OM vuông góc với AC hay OI vuông góc với AC và AI=IC[tính chất đường kính]
Do đó OI song song với AB[cùng vuông góc với AC]
theo định lí ta-lét ta có \(\frac{OI}{AB}=\frac{IC}{AC}\)
mà IC=AC =8/2=4 cm
thay vào giải ra OI=6*4/8=3 cm
còn câu 1 tớ cũng đang định hỏi đây
LƯU Ý
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.
Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày
Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.
a: Xét tứ giác AHMK có \(\widehat{AHM}+\widehat{AKM}=90^0+90^0=180^0\)
nên AHMK là tứ giác nội tiếp đường tròn đường kính AM
Tâm là trung điểm của AM
b: Xét (O) có
\(\widehat{BAD}\) là góc nội tiếp chắn cung BD
\(\widehat{BCD}\) là góc nội tiếp chắn cung BD
Do đó: \(\widehat{BAD}=\widehat{BCD}\left(1\right)\)
Ta có: AKMH là tứ giác nội tiếp
=>\(\widehat{KAM}=\widehat{KHM}\)
=>\(\widehat{BAD}=\widehat{KHM}\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{BCD}=\widehat{KHM}\)
Xét (O) có
\(\widehat{DAC}\) là góc nội tiếp chắn cung DC
\(\widehat{DBC}\) là góc nội tiếp chắn cung DC
Do đó: \(\widehat{DAC}=\widehat{DBC}\left(3\right)\)
Ta có: AHMK là tứ giác nội tiếp
=>\(\widehat{MAH}=\widehat{MKH}=\widehat{DAC}\left(4\right)\)
Từ (3),(4) suy ra \(\widehat{DBC}=\widehat{MKH}\)
Xét ΔMKH và ΔDBC có
\(\widehat{MKH}=\widehat{DBC}\)
\(\widehat{MHK}=\widehat{DCB}\)
Do đó: ΔMKH~ΔDBC
a . i ) Vì CM,CA là tiếp tuyến của (O)
\(\Rightarrow CM\perp OM,CA\perp OA\Rightarrow CMOA\) nội tiếp đường tròn đường kính CO
Tương tự : = > DMOB nội tiếp
ii ) Vì CM,CA là tiếp tuyến của (O) \(\Rightarrow OC\) là phân giác của \(\widehat{AOM}\)
Tương tự OD là phân giác \(\widehat{BOM}\)
Mà \(\widehat{AOM}+\widehat{MOB}=180^0\Rightarrow OC\perp OD\)
Ta có : CMOA , OBDM nội tiếp
\(\Rightarrow\widehat{AOC}=\widehat{AMC}=\widehat{ABM}=\widehat{OBM}=\widehat{ODM}\) vì CM là tiếp tuyến của (O)
b ) Ta có : \(\widehat{MAB}=60^0\Rightarrow\widehat{DMB}=\widehat{MAB}=60^0\) vì DM là tiếp tuyến của (O)
Mà \(DM=DB\Rightarrow\Delta DMB\) đều
Lại có : \(\widehat{MOB}=2\widehat{MAB}=120^0\)
\(\Rightarrow\frac{S_{MB}}{S_O}=\frac{120^0}{360^0}=\frac{1}{3}\)
\(\Rightarrow S_{MB}=\frac{1}{3}S_O=\frac{1}{3}.\pi.R^2\)
Câu 1: D
Câu 2: B