Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C108: Thấy cái này hay hay nên chăm hơn chứ lười quá :v
Đặt \(xy=t\Rightarrow x^2+y^2=4-2t\).
Ta cần chứng minh \(t\left(4-2t\right)\le2\). (*)
Thật vậy \((*)\Leftrightarrow 2(t-2)^2\geq 0\) (luôn đúng).
Đẳng thức xảy ra khi và chỉ khi \(xy=2\) tức x = y =1
C108 :
Áp dụng BĐT Cô - si ta có :
\(xy\left(x^2+y^2\right)=\dfrac{1}{2}\cdot\left[2xy.\left(x^2+y^2\right)\right]\le\dfrac{1}{2}\cdot\left(\dfrac{2xy+x^2+y^2}{2}\right)^2=\dfrac{1}{2}\cdot\dfrac{\left(x+y\right)^4}{4}=\dfrac{1}{2}\cdot\dfrac{2^4}{4}=2\)
Dấu "=" xảy ra khi \(x=y=1\)
C108: Thấy cái này hay hay nên chăm hơn chứ lười quá :v
Đặt \(xy=t\Rightarrow x^2+y^2=4-2t\).
Ta cần chứng minh \(t\left(4-2t\right)\le2\). (*)
Thật vậy \((*)\Leftrightarrow 2(t-2)^2\geq 0\) (luôn đúng).
Đẳng thức xảy ra khi và chỉ khi \(xy=2\) tức x = y =1
2.
\(\left(a+b\right)^2\ge4ab\ge16\Rightarrow a+b\ge4\)
\(\dfrac{a^2+b^2}{a+b}\ge\dfrac{\left(a+b\right)^2}{2\left(a+b\right)}=\dfrac{a+b}{2}\)
Nên ta chỉ cần chứng minh: \(\dfrac{a+b}{2}\ge\dfrac{6}{a+b-1}\)
\(\Leftrightarrow\left(a+b\right)\left(a+b-1\right)-12\ge0\)
\(\Leftrightarrow\left(a+b-4\right)\left(a+b+3\right)\ge0\) (luôn đúng với mọi \(a+b\ge4\))
Dấu "=" xảy ra khi \(a=b=2\)
Câu cuối:
Ta chứng minh BĐT phụ sau: với mọi x;y;z dương, ta luôn có: \(\dfrac{x^3+y^3}{x^2+y^2}\ge\dfrac{x+y}{2}\)
Thật vậy, bất đẳng thức tương đương:
\(2\left(x^3+y^3\right)\ge\left(x+y\right)\left(x^2+y^2\right)\)
\(\Leftrightarrow x^3+y^3-x^2y-xy^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (đúng)
Áp dụng:
\(P\ge\dfrac{a+b}{2}+\dfrac{b+c}{2}+\dfrac{c+a}{2}=a+b+c\ge6\)
\(P_{min}=6\) khi \(a=b=c=2\)
Nếu được dùng giai thừa thì...
\(\left(\left(\left(\left(2!\right)!\right)!\right)...\right)!\) = :))
`4)(2x^3+3x)/(7-2x)>\sqrt{2-x}(x<=2)`
`<=>(2x^3+3x^2)/(7-2x)-1>\sqrt{2-x}-1`
`<=>(2x^3+3x^2+2x-7)/(7-2x)-((\sqrt{2-x}-1)(\sqrt{2-x}+1))/(\sqrt{2-x}+1)>0`
`<=>(2x^3-2x^2+5x^2-5x+7x-7)/(7-2x)-(1-x)/(\sqrt{2-x}+1)>0`
`<=>((x-1)(2x^2+5x+7))/(7-2x)+(x-1)/(\sqrt{2-x}+1)>0`
`<=>(x-1)((2x^2+5x+7)/(7-2x)+1/(\sqrt{2-x}+1))>0`
`<=>x>1` do `x<=2=>7-2x>0,2x^2+5x+7>0 AA x,\sqrt{2-x}>0,1>0`
`=>(2x^2+5x+7)/(7-2x)+1/(\sqrt{2-x}+1)>0`
`=>1<x<=2`
Câu 1:
$\begin{cases}14x^2-21y^2-6x+45y-4=0\\35x^2+28y^2+41x-122y+56=0\\\end{cases}$
`<=>` $\begin{cases}686x^2-1028y^2-174x+294y-196=0\\525x^2+420y^2+615x-1830y+840\\\end{cases}$
Lấy pt đầu trừ pt dưới
`<=>161x^2+483y-1127-483xy-1449y+3381+218x+654y-1519=0`
`<=>161x(x+3y-7)-483y(x+3y-7)+218(x+3y-7)=0`
`<=>(x+3y-7)(161x-483y+218)=0`
Đến đây chia 2 th ta được `(x,y)=(-2,3),(1,2)`
Bài II:
1) \(PT\Leftrightarrow3x^2+2y^2+z^2+4xy+2yz+2zx=26\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+y\right)^2+x^2=26\).
Tách \(26=0^2+1^2+5^2=1^2+3^2+4^2\).
Mặt khác ta có x + y + z > x + y > x > 0 nên ta phải có x = 1; x + y = 3; x + y + z = 4.
Từ đó x = 1; y = 2; z = 1.
Vậy nghiệm nguyên dương của phương trình là (x, y, z) = (1; 2; 1).
Bài I :
1 ĐKXĐ \(x\ge\dfrac{-1}{8}\)
\(\Leftrightarrow9x+17-6\sqrt{8x+1}-4\sqrt{x+3}=0\)
\(\Leftrightarrow8x+1-6\sqrt{8x+1}+9+x+3-4\sqrt{x+3}+4=0\)
\(\Leftrightarrow\left(\sqrt{8x+1}-3\right)^2+\left(\sqrt{x+3}-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{8x+1}-3=0\\\sqrt{x+3}-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{8x+1}=3\\\sqrt{x+3}=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}8x+1=9\\x+3=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}8x=8\\x=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=1\end{matrix}\right.\)
\(\Leftrightarrow x=1\left(TM\right)\)
Vậy...