K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2021

Đây là cách của em.

Ta chứng minh bất đẳng thức sau:

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}+\dfrac{27}{16}\cdot\dfrac{\left(a-b\right)^2}{a+b+c}\)

\(\bullet\) Nếu \(c\ne \text{mid}\{a,b,c\}\) thì \(\left(a-c\right)\left(b-c\right)\ge0\Rightarrow\left(a-b\right)^2\le a^2+b^2+c^2-ab-bc-ca\) từ đây đưa về đối xứng và chứng minh dễ dàng.

\(\bullet\) Nếu \(c= \text{mid}\{a,b,c\}.\) Chuẩn hóa \(a+b=1\Rightarrow0\le c\le1.\) Đặt \(x=ab\Rightarrow0< x\le c\left(1-c\right)\)

Cần chứng minh

\(f(x)=108\,{x}^{2}+ \left( 16\,{c}^{3}+84\,{c}^{2}+12\,c-83 \right) x+ \left( c+1 \right) \left( 16\,{c}^{4}+8\,{c}^{3}-16\,{c}^{2}-19\,c+ 16 \right) \ge 0\)

\(f'(x)=16\,{c}^{3}+84\,{c}^{2}+12\,c+216\,x-83 \)

*Nếu $0 \le c \le \dfrac{1}{2}$ thì \(f'\left(x\right)\le\left(2c-1\right)\left(8c^2-62c+83\right)\le0\)

Khi đó $f(x)$ là hàm nghịch biến nên \(f\left(x\right)\ge f\left(c\left(1-c\right)\right)=2\left(8c^2-11c+8\right)\left(2c-1\right)^2\ge0\)

*Nếu $\dfrac{1}{2} \le c \le 1$ thì \(\Delta_x= \left( 64\,{c}^{4}-992\,{c}^{3}-1740\,{c}^{2}-788\,c-23 \right) \left( 2\,c-1 \right) ^{2}\le 0\)

ta có điều phải chứng minh

:D

28 tháng 1 2021

Lâu rồi mới đăng bài vì mấy bài kia khó quá :vv

C39: 

Đặt \(\left\{{}\begin{matrix}x+y+z=a>0\\y+z+4x=b>0\\z+x+16y=c>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{b-a}{3}\\y=\dfrac{c-a}{15}\\z=\dfrac{21a-5b-c}{15}\end{matrix}\right.\).

Khi đó áp dụng bđt AM - GM ta có:

\(P=\dfrac{5b+c-6a}{15a}+\dfrac{4a-b}{3b}+\dfrac{16a-c}{15c}=\left(\dfrac{b}{3a}+\dfrac{4a}{3b}\right)+\left(\dfrac{c}{15a}+\dfrac{16a}{15c}\right)-\left(\dfrac{2}{5}+\dfrac{1}{3}+\dfrac{1}{15}\right)\ge\dfrac{4}{3}+\dfrac{8}{15}-\dfrac{4}{5}=\dfrac{16}{15}\).

Đẳng thức xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}b=2a\\c=4a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y+z+4x=2\left(x+y+z\right)\\z+x+16y=4\left(x+y+z\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=y+z\\4y=x+z\end{matrix}\right.\Leftrightarrow21x=35z=15z\).