K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có :

\(\frac{666665}{333333}< \frac{666666}{333333}=2\text{ hay }\frac{666665}{333333}=2-\frac{1}{333333}\)

Lại có :

\(\frac{2014}{2015}+\frac{2015}{2014}=\left(1-\frac{1}{2015}\right)+\left(1+\frac{1}{2014}\right)\)

\(=\left(1+1\right)+\left(\frac{1}{2014}-\frac{1}{2015}\right)=2-\frac{1}{4058210}\)

Vì \(\frac{1}{333333}>\frac{1}{4058210}\Rightarrow2-\frac{1}{333333}< 2-\frac{1}{4058210}\)

\(\Rightarrow\frac{666665}{333333}< \frac{2014}{2015}+\frac{2015}{2014}\)

Mình nhầm xíu :

Ta có :

\(\frac{666665}{333333}< \frac{666666}{333333}=2\)

Lại có :

\(\frac{2014}{2015}+\frac{2015}{2014}=\left(1-\frac{1}{2015}\right)+\left(1+\frac{1}{2014}\right)\)

\(=\left(1+1\right)+\left(\frac{1}{2014}-\frac{1}{2015}\right)=2+\frac{1}{4058210}>2\)

\(\text{VÌ }\frac{666665}{333333}< 2< \frac{2014}{2015}+\frac{2015}{2014}\)

\(\Rightarrow\frac{666665}{333333}< \frac{2014}{2015}+\frac{2015}{2014}\)

25 tháng 8 2021

A)=vậy\(\frac{2014}{2015}+\frac{2015}{2014}>\frac{666665}{333333}.\)

bạn nhé

12 tháng 4 2016

\(A=\left(-\frac{1}{2}\right).\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right)......\left(-\frac{2013}{2014}\right)=\left(-\frac{1}{2014}\right)\) (Do các thừa số đều âm và A có (2014-2)+1=2013 thừa số nên A mang giá trị âm)

\(B=-\frac{1}{2015}\)

=> A<B (|A|>|B|)

8 tháng 5 2017

NHẤT ĐỊNH SẼ CÓ PHÂN SỐ \(1-\frac{2014}{2014}=0\)

NÊN tích dãy số đó là 0

tk nha

17 tháng 4 2018

100 ngày

14 tháng 5 2016

Đặt \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2015}-\frac{1}{2016}\)

\(A=\left(1+\frac{1}{3}+\frac{1}{5}+.....+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2016}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}\right)-2\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2016}\right)\)

\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2015}+\frac{1}{2016}-\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{1008}\right)\)

\(A=\frac{1}{1009}+\frac{1}{1010}+.....+\frac{1}{2016}\)

Khi đó  \(\frac{\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}\right)}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=\frac{A}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=\frac{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=1\)
 

14 tháng 5 2016

Bạn xem lời giải của mình nhé:

Giải:

Bài 2:

Ta xét A = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(=1+\left(\frac{1}{2}-1\right)+\frac{1}{3}+\left(\frac{1}{4}-\frac{2}{4}\right)+...+\frac{1}{2015}+\left(\frac{1}{2016}-\frac{2}{2016}\right)\\ =1+\frac{1}{2}-1+\frac{1}{3}+\frac{1}{4}-\frac{1}{2}+...+\frac{1}{2015}+\frac{1}{2016}-\frac{1}{1008}\)

\(=\left(1-1\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{1008}-\frac{1}{1008}\right)+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)

\(=\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)

 \(\Rightarrow\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right):\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)\\ =\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right):\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)\\ =1\)

Chúc bạn học tốt!hihi

3 tháng 4 2018

Ta có : 

\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{2016}\right)\)

\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{2015}{2016}\)

\(A=\frac{2.3.4.....2015}{2.3.4.....2015}.\frac{1}{2016}\)

\(A=\frac{1}{2016}\)

Vậy \(A=\frac{1}{2016}\)

Chúc bạn học tốt ~ 

8 tháng 6 2018

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)..\left(1-\frac{1}{2016}\right)\)

\(\Rightarrow A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2015}{2016}\)

\(\Rightarrow A=\frac{1.2.3..2015}{2.3.4..2016}\)

\(\Rightarrow A=\frac{1}{2016}\)

2 tháng 4 2017

bằng 0 bạn ạ

2 tháng 4 2017

kết quả = 0 nha

kết bạn nhé

16 tháng 8 2016

Ta có

\(A=\frac{\left(1^2-2^2\right)\left(1^2-3^2\right).....\left(1^2-2014^2\right)}{\left(2.3.4.....2014\right)\left(2.3....2014\right)}\)

\(\Leftrightarrow A=\frac{\left(-1\right)3\left(-2\right)4.....\left(-2013\right)2015}{\left(2.3.4.....2014\right)\left(2.3....2014\right)}\)

\(\Leftrightarrow A=\frac{\left[\left(-1\right)\left(-2\right)...\left(-2013\right)\right]\left(3.4.5...2015\right)}{\left(2.3.4.....2014\right)\left(2.3....2014\right)}\)

\(\Leftrightarrow A=\frac{\left(-1\right)2015}{2014.2}=-\frac{2015}{4028}< -\frac{2014}{4028}=-\frac{1}{2}\)

=> A<-1/2

 

12 tháng 2 2019

\(A=\left(1-\frac{1}{21}\right).\left(1-\frac{1}{28}\right).\left(1-\frac{1}{36}\right).....\left(1-\frac{1}{1326}\right)\)

\(A=\frac{20}{21}.\frac{27}{28}.\frac{35}{36}......\frac{1325}{1326}\)

\(A=\frac{5.8}{6.7}.\frac{6.9}{7.8}.\frac{7.10}{8.9}.....\frac{50.53}{51.52}\)

\(A=\frac{5.\left(6.7.....50\right)}{\left(6.7.....50\right).51}.\frac{53.\left(8.9.10.....52\right)}{7.\left(8.9.10.......52\right)}\)

\(A=\frac{5}{51}.\frac{53}{7}=\frac{265}{357}\)

18 tháng 6 2019

b) 

Gọi 3 số đó là : a) b) c)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)là số nguyên

Vì a ; b ; c số tự nhiên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)là phân số

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)lớn nhất \(=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}=\frac{11}{6}< 2\)và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)nhỏ nhất \(>0\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Vậy 3 số tự nhiên cần tìm là : 2 ; 3 ; 6

18 tháng 6 2019

a) 

\(A=\frac{4}{6}\times10+\frac{6}{10}\times16+\frac{1}{16}\times3+\frac{1}{24}\times7+\frac{1}{28}\times5\)

\(A=\frac{20}{3}+\frac{48}{5}+\frac{3}{16}+\frac{7}{24}+\frac{5}{28}\)

\(A=\frac{11200}{1680}+\frac{16128}{1680}+\frac{315}{1680}+\frac{490}{1680}+\frac{300}{1680}\)

\(A=\frac{26433}{1680}\)

Vậy \(A=\frac{26433}{1680}\)