Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Để quy hoạch x sào đất trồng cà tím, cần \(200\,000.x\)(đồng)
Để quy hoạch y sào đất trồng cà chua, cần \(100\,000.y\)(đồng)
Tổng số tiền để mua hạt giống là \(200{\rm{ }}000.x + 100{\rm{ }}000.y\) (đồng), tối đa là 9 triệu đồng nên ta có bất phương trình: \(0,2x + 0,1y \le 9\)
Ngoài ra số sào đất là số không âm nên \(x \ge 0\) và \(y \ge 0\)
b) + Cặp số (20; 40) thỏa mãn cả 3 bất phương trình trên vì \(0,2.20 + 0,1.40 = 8 < 9\).
+ Cặp số (40; 20) không thỏa mãn các bất phương trình trên vì \(0,2.40 + 0,1.20 = 10 > 9\).
+ Cặp số (-30; 10) không thỏa mãn các bất phương trình trên vì \( - 30 < 0\).
Tham khảo:
a) Giả sử gia đình đó mua x kilôgam thịt bò và y kilôgam thịt lợn.
Số lượng thịt bò và thịt lợn phải là một số không âm nên ta có: \(x \ge 0,y \ge 0\).
Một gia đình cần ít nhất 900 đơn vị protein trong thức ăn mỗi ngày nên ta có: \(800x + 600y \ge 900 \Leftrightarrow 8x + 6y \ge 9\)
Một gia đình cần ít nhất 400 đơn vị protein trong thức ăn mỗi ngày nên ta có: \(200x + 400y \ge 400 \Leftrightarrow x + 2y \ge 2\)
Vì gia đình này chỉ mua nhiều nhất là 1,6 kg thịt bò và 1,1 kg thịt lợn nên ta có:
\(x \le 1,6\) và \(y \le 1,1\).
Vậy ta có hệ: \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\8x + 6y \ge 9\\x + 2y \ge 2\\x \le 1,6\\y \le 1,1\end{array} \right.\)
Miền nghiệm của hệ là tứ giác ABCD với
A(1,6;0,2) (giao của d’ và đường thẳng x=1,6)
B(1,6;1,1) (giao của đường thẳng x=1,6 và đường thẳng y=1,1)
C(0,3;1,1) (giao của d và đường thẳng y=1,1)
D(0,6;0,7) (giao của d và d’)
b) Vì số tiền mỗi kg thịt bò và thịt lợn lần lượt là 250 nghìn đồng và 160 nghìn đồng nên ta có
\(F\left( {x;y} \right) = 250x + 160y\)(nghìn đồng)
c)
Ta cần tìm giá trị lớn nhất của F(x;y) khi (x;y) thỏa mãn hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\8x + 6y \ge 9\\x + 2y \ge 2\\x \le 1,6\\y \le 1,1\end{array} \right.\)
Ta có F(1,6;0,2)=250.1,6+160.0,2=432.
F(1,6;1,1)=250.1,6+160.1,1=576
F(0,3;1,1)=251
F(0,6;0,7)=262
Giá trị nhỏ nhất là F(0,3;1,1)=251.
Vậy để chi phí ít nhất thì cần mua 0,3kg thịt bò và 1,1 thịt lợn.
Chú ý
Đơn vị của F phải là nghìn đồng.
Sau khi mua thì Cường còn lại \(\frac{3}{5}=\frac{15}{25}\) số tiền, Huy còn lại \(\frac{5}{7}=\frac{15}{21}\) số tiền.
Ta thấy thấy tiền của Cường có 25 phần thì tiền của Huy có 21 phần.
Giá trị 1 phần là:
219000:(15+15)=7300 (đồng)
Tiền của Cường có được là:
7300x25=182500(đồng)
Tiền của Huy có được là:
7300x21=153300 (đồng)
Đáp số:153300 đồng
cân 9 lần một bên là một đồng tiền cân lần lượt các đồng tiền xem đồng nào nhẹ
K CHO EM ĐI CHỊ ƠI
Gọi x, y, z lần lượt là số đồng tiền xu loại 2000 đồng, 1000 dồng, 500 đồng.
Điều kiện là x, y, z nguyên dương
Ta có hệ phương trình
x + y + z = 1450 (1)
4x + 2y + z = 3000 (2)
2x + y - 2z = 0 (3)
Trừ từng vế tương ứng của phương trình (2) với phương trình (1) ta được
3x + y = 1550
Cộng từng vế tương ứng của các phương trình (1), (2) và (3) ta có :
7x + 4y = 4450.
Giải hệ gồm hai phương trình (4) và (5) ta được.
x = 350, y = 500.
Thay các giá trị của x, y vào phương trình (1) ta được z = 600.
Vậy cửa hàng đổi được 350 đồng tiền xu loại 2000 đồng, 500 đồng tiền loại 1000 đồng và 600 đồng tiền xu loại 500 đồng.
Gọi x, y, z lần lượt là số đồng tiền xu loại 2000 đồng, 1000 dồng, 500 đồng.
Điều kiện là x, y, z nguyên dương
Ta có hệ phương trình:
x + y + z = 1450 (1)
4x + 2y + z = 3000 (2)
2x + y - 2z = 0 (3)
Trừ từng vế tương ứng của phương trình (2) với phương trình (1) ta được:
3 x + y = 1550
Cộng từng vế tương ứng của các phương trình (1), (2) và (3) ta có :
7 x + 4 y = 4450.
Giải hệ gồm hai phương trình (4) và (5) ta được:
x = 350, y = 500.
Thay các giá trị của x, y vào phương trình (1) ta được z = 600.
Vậy cửa hàng đổi được 350 đồng tiền xu loại 2000 đồng, 500 đồng tiền loại 1000 đồng và 600 đồng tiền xu loại 500 đồng.
Gọi x và y lần lượt là giá tiền mỗi quả quýt và mỗi quả cam. (x > 0; y > 0)
Vân mua 10 quả quýt, 7 quả cam hết 17800 đồng nên ta có:
10x + 7y = 17800
Lan mua 12 quả quýt, 6 quả cam hết 18000 đồng nên ta có:
12x + 6y = 18000
Từ đó ta có hệ:
Từ (2) rút ra được y = 3000 – 2x, thay vào (1) ta được :
10x + 7.(3000 – 2x) = 17800
⇔ 10x + 21000 – 14x = 17800
⇔ 4x = 3200 ⇔ x = 800 (thỏa mãn)
Thay x = 800 vào y = 3000 – 2x ta được y = 1400 (thỏa mãn)
Vậy giá tiền một quả quýt là 800đ và giá tiền một quả cam là 1400đ.
Gọi x là số kg cam
y là số kg quýt
Theo đề , ta có
\(\hept{\begin{cases}x+y=6\\15000x+20000y=100000\end{cases}}\)
\(\hept{\begin{cases}x=4\\y=2\end{cases}}\)
TRẢ LỜI:
Gọi x, y, z lần lượt là số đồng tiền xu loại 2000 đồng, 1000 dồng, 500 đồng.
Điều kiện là x, y, z nguyên dương
Ta có hệ phương trình
x + y + z = 1450 (1)
4x + 2y + z = 3000 (2)
2x + y - 2z = 0 (3)
Trừ từng vế tương ứng của phương trình (2) với phương trình (1) ta được
3x + y = 1550
Cộng từng vế tương ứng của các phương trình (1), (2) và (3) ta có :
7x + 4y = 4450.
Giải hệ gồm hai phương trình (4) và (5) ta được.
x = 350, y = 500.
Thay các giá trị của x, y vào phương trình (1) ta được z = 600.
Vậy cửa hàng đổi được 350 đồng tiền xu loại 2000 đồng, 500 đồng tiền loại 1000 đồng và 600 đồng tiền xu loại 500 đồng.
\(120000x+30000y\le200000\)