K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2020

a, vì tgABC là tg cân tại A có AH là đường cao 

=> AH là đường phân giác của gBAC

xét tgAHB và tgAHC có AB=AC

                                     gBAH=gCAH

                                    AH là cạnh chung

=> tgAHB=tgAHC (c.g.c)

b, vì tgABC là tg cân tại A có AH là đường cao

=> AH là đường trung tuyến 

=> H là trung điểm của BC

c, bn xem lại đề bài câu c giúp mk 

mk ko hiểu lắm

NM
14 tháng 1 2022

ta có độ dài AB là : \(\left(17+7\right):2=12cm\)

độ dài AC là : \(12-7=5cm\)

độ dài cạnh BC là : \(BC=\sqrt{12^2+5^2}=13cm\)

Chu vi tam giác ABC là : \(AB+BC+AC=12+5+13=30cm\)

DIện tích tam giác ABC là : \(AB\times\frac{AC}{2}=12\times\frac{5}{2}=30cm^2\)

23 tháng 3 2016

1.

Ta có : AC<AD (vì : D là tia đối của tia BC )

=> HD<HC

3. 

Ta có : AB+AC>AH (vì : tog 2 cah cua tam giác luôn lớn hơn cah con lại)

Mà : 1/2AH<AB+AC

=> AB+AC>2AH

4.

Ta có : ko hiu

23 tháng 3 2016

bạn giải bài 3 mik hk hiu, bn viết rõ rak dc hk

8 tháng 7 2021

A B H C

a,xét ΔAHB VÀ ΔAHC

AB=AC(gt)

góc AHB= góc AHC=900

AH:cạnh chung

⇒ΔAHB=ΔAHC(cạnh huyền- góc nhọn)

⇒AH là đường trung tuyến của ΔABC

b,Ta có HB=1/2 BC

➩HB =1/2*BC

⇒HB=1/2*8

⇒HB=4(cm)

xét ΔAHBcó góc AHB=900

 AB2=AH2+HB2(định lý py -ta- go)

⇒AH2=AB2-HB2

⇒ AH2= 52- 42

⇒AH2=25-16

⇒AH2=9

⇒AH2=(3)2=(-3)2

⇒AH=3(cm)

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

DO đó: ΔAHB=ΔAHC

Suy ra: HB=HC

hay H là trung điểm của BC

b: Xét ΔMAD và ΔMBH có 

\(\widehat{MAD}=\widehat{MBH}\)

MA=MB

\(\widehat{AMD}=\widehat{BMH}\)

Do đó:ΔMAD=ΔMBH

Suy ra: AD=BH

hay BH=2,5cm

Xét ΔABH vuông tại H có \(AB^2=AH^2+HB^2\)

hay AH=6(cm)

6 tháng 2 2022

bạn có biết giải câu c) không ? Nếu giải được thì chỉ giúp mình với

1: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>HB=HC

=>H là trung điểm của BC

2: Ta có: H là trung điểm của BC

=>\(HB=HC=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HA^2=10^2-6^2=64\)

=>\(HA=\sqrt{64}=8\left(cm\right)\)

3: Xét ΔAHN có

AF là đường cao

AF là đường trung tuyến

Do đó: ΔAHN cân tại A

=>AH=AH

4: Xét ΔAHM có

AE là đường trung tuyến

AE là đường cao

Do đó: ΔAHM cân tại A

=>AM=AH

Ta có: ΔAHN cân tại A

mà AC là đường cao

nên AC là phân giác của góc HAN

=>\(\widehat{HAN}=2\cdot\widehat{HAC}\)

Ta có: ΔAHM cân tại A

mà AB là đường cao

nên AB là phân giác của góc HAM

=>\(\widehat{HAM}=2\cdot\widehat{HAB}\)

Ta có: AM=AH

AH=AN

Do đó: AM=AN

Ta có: \(\widehat{HAM}+\widehat{HAN}=\widehat{MAN}\)

=>\(\widehat{MAN}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)

=>\(\widehat{MAN}=2\cdot\widehat{BAC}\)

Để A là trung điểm của MN thì AM=AN và góc MAN=180 độ

=>góc MAN=180 độ

=>\(2\cdot\widehat{BAC}=180^0\)

=>\(\widehat{BAC}=90^0\)

26 tháng 1 2018

Từng bài 1 thôi nha!

Mình làm bài 3 cho dễ

Bn tự vẽ hình

a) CM tg ABH=tg ACH (ch-cgv)

=> HC=HB=2 góc tương ứng 

Nên H là trung điểm BC

=> HB=HC=BC:2=8:2=4 ; góc BAH= góc CAH

b) Có: tg ABH vuông tại H (AH vuông góc BC)

=> AH2+BH2=AB => AH2+42=52 => AH2=9

Mà AH>O Nên AH=3

c) Xét tg ADH và tg AEH có:

\(\Delta ADH=\Delta AEH\left(ch-gh\right)\hept{\begin{cases}\widehat{ADH}=\widehat{AEH}=90^o\\AHcanhchung\\\widehat{DAH}=\widehat{EAH}\left(\Delta ABH=\Delta ACH\right)\end{cases}}\)

=> HD=HE(2 góc tương ứng)

=> tg HDE cân tại H