Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
f(x) = 3x - 6 = 3x - 3.2 = 3(x - 2) => nghiệm của f(x) là 2.
h(x) = -5x + 30 = -5x + (-5) . (-6) = -5(x - 6) => nghiệm của h(x) là 6.
g(x) = (x - 3)(16 - 4x) => nghiệm của g(x) là 3 hoặc 4.
k(x) = x2 - 81 = x2 - 92 = (x + 9)(x - 9) => nghiệm của k(x) là -9 hoặc 9.
m(x) = x2 + 7x - 8 = x2 - x + 8x - 8 = x(x - 1) + 8(x - 1) = (x + 8)(x - 1) => nghiệm của m(x) là -8 hoặc 1.
n(x) = 5x2 + 9x + 4 = 5x2 + 5x + 4x + 4 = 5x(x + 1) + 4(x + 1) = (5x + 4)(x + 1) => nghiệm của n(x) là \(-\frac{4}{5}\)hoặc -1.
A(x) = 3x2 - 12x = 3x2 - 3x . 4 = 3x(x - 4) => nghiệm của đa thức là 0 hoặc 4.
2) x2 + 4x + 5 = x2 + 2x + 2x + 4 + 1 = x(x + 2) + 2(x + 2) + 1 = (x + 2)(x + 2) + 1 = (x + 2)2 + 1 \(\ne0\) (đpcm)
3x - 6 = 0
3x = 6
x = 6 : 3
x = 2
Vậy x = 2 là nghiệm của đa thức f(x)
-5x + 30 = 0
-5x = -30
x = -30 : (-5)
x = 6
Vậy x = 6 là nghiệm của đa thức trên
(x - 3)(16 - 4x) = 0
- x - 3 = 0
x = 3
- 16 - 4x = 0
4x = 16
x = 16 : 4
x = 4
Vậy x = 3 và x = 4 là nghiệm của đa thức trên
x^2 - 81 = 0
x^2 = 81
x^2 = \(\left(\pm9\right)^2\)
x = \(\pm9\)
Vậy x = 9 và x = -9 là nghiệm của đa thức trên
x^2 + 7x - 8 = 0
x^2 - x + 8x - 8 = 0
x(x - 1) + 8(x - 1) = 0
(x + 8)(x - 1) = 0
- x + 8 = 0
x = -8
- x - 1 = 0
x = 1
Vậy x = -8 và x = 1 là nghiệm của đa thức trên
5x^2 + 9x + 4 = 0
5x^2 + 5x + 4x + 4 = 0
5x(x + 1) + 4(x + 1) = 0
(5x + 4)(x + 1) = 0
- 5x + 4 = 0
5x = -4
x = -4/5
- x + 1 = 0
x = -1
Vậy x = -4/5 và x = -1 là nghiệ của đa thức trên
Chúc bạn học tốt
a) Cho x2-1=0
x2=1
x= 1 hoặc -1
b)Cho P(x)=0
-x2 + 4x - 5 = 0
-x2 + 4x = 5
-x . x + 4x = 5
x(-x+4) = 5
TH1: x= 5
TH2: -x+4 = 5
-x= 1
x=-1
xong bạn thay số rồi kết luận nhá
a,\(x^2-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}}\)
KL:...
b,\(P\left(x\right)=-x^2+4x-5\)
\(=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+4+1\right)\)
\(=-\left[\left(x-2\right)^2+1\right]\le1\forall x\)
\(\Rightarrow VN\)
1)
f(x) = 3x - 6 = 3x - 3.2 = 3(x - 2) => nghiệm của f(x) là 2.
h(x) = -5x + 30 = -5x + (-5) . (-6) = -5(x - 6) => nghiệm của h(x) là 6.
g(x) = (x - 3)(16 - 4x) => nghiệm của g(x) là 3 hoặc 4.
k(x) = x2 - 81 = x2 - 92 = (x + 9)(x - 9) => nghiệm của k(x) là -9 hoặc 9.
m(x) = x2 + 7x - 8 = x2 - x + 8x - 8 = x(x - 1) + 8(x - 1) = (x + 8)(x - 1) => nghiệm của m(x) là -8 hoặc 1.
n(x) = 5x2 + 9x + 4 = 5x2 + 5x + 4x + 4 = 5x(x + 1) + 4(x + 1) = (5x + 4)(x + 1) => nghiệm của n(x) là \(-\frac{4}{5}\)hoặc -1.
A(x) = 3x2 - 12x = 3x2 - 3x . 4 = 3x(x - 4) => nghiệm của đa thức là 0 hoặc 4.
2) x2 + 4x + 5 = x2 + 2x + 2x + 4 + 1 = x(x + 2) + 2(x + 2) + 1 = (x + 2)(x + 2) + 1 = (x + 2)2 + 1 \(\ne0\) (đpcm)
a: \(P\left(1\right)=1^3-1^2-4\cdot1+4=-4+4=0\)
=>x=1 là nghiệm của P(x)
\(P\left(-2\right)=\left(-2\right)^3-\left(-2\right)^2-4\cdot\left(-2\right)+4=-8-4+8+4=0\)
=>x=-2 là nghiệm của P(x)
b: \(P\left(1\right)=5\cdot1^3-7\cdot1^2+4\cdot1-2=5-7+4-2=0\)
=>x=1 là nghiệm của P(x)
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
f(x)=5x3+2x4-x2+3x2-x3-x4+1-4x3
=(5x3-x3-4x3)+(2x4-x4)+(3x2-x2)+1
=0+x4+2x2+1>(=)0+0+0+1=1
=>đa thức f(x) không có nghiệm
=>đpcm
\(a)\)
\(\text{Ta có:}\)
\(x^2-2=0\)
\(\rightarrow x^2=x\)
\(\rightarrow x=\pm\sqrt{2}\)
Vậy ...
\(b)\)
\(\text{Ta có:}\)
\(x^2+5x+7\)
\(\rightarrow x^2+2x\frac{5}{2}+\left(\frac{5}{2}\right)^2+\frac{3}{4}\)
\(\rightarrow\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\)
\(\rightarrow\left(x+\frac{5}{2}\right)^2\ge0\)
\(\rightarrow\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy ...
a, Đặt \(x^2-2=0\Leftrightarrow x^2=2\Leftrightarrow x=\pm\sqrt{2}\)
b, Ta có : \(Q\left(x\right)=x^2+5x+7=x^2+2.\frac{5}{2}x+\frac{25}{4}+\frac{3}{4}\)
\(=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}>0\forall x\)
Vậy đa thức ko có nghiệm
b.
Đặt \(f\left(x\right)=x^2-5x+51=x^2-5x+\dfrac{25}{4}+\dfrac{37}{2}=\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{2}\)
Do \(\left(x-\dfrac{5}{2}\right)^2\ge0;\forall x\Rightarrow\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{2}\ge\dfrac{37}{2}\) ;\(\forall x\)
\(\Rightarrow\) Đa thức \(f\left(x\right)\) không có nghiệm
c.
Đặt \(g\left(x\right)=-x^2-6x-45=-\left(x^2+6x+9\right)-36=-\left(x+3\right)^2-36\)
Do \(-\left(x+3\right)^2\le0;\forall x\Rightarrow-\left(x+3\right)^2-36\le-36\) ;\(\forall x\)
\(\Rightarrow\) Đa thức \(g\left(x\right)\) không có nghiệm
d.
Đặt \(h\left(x\right)=x^2-4x+26=\left(x^2-4x+4\right)+22=\left(x-2\right)^2+22\)
Do \(\left(x-2\right)^2\ge0;\forall x\Rightarrow\left(x-2\right)^2+22\ge22\) ;\(\forall x\)
\(\Rightarrow\) Đa thức \(h\left(x\right)\) không có nghiệm
4.
d. \(x^3-19x^2=0\)
\(\Leftrightarrow x^2\left(x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x-19=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=19\end{matrix}\right.\)
Vậy đa thức có 2 nghiệm là \(x=0;x=19\)