Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a) (2x + 1)3 = 125
=> (2x + 1)3 = 53
=> 2x + 1 = 5
=> 2x = 5 - 1
=> 2x = 4
=> x = 2
b) (x - 5)4 = (x - 5)6
Với hai mũ khác nhau , ta chỉ có thể tìm được giá trị biểu thức bằng 1 hoặc 0 (giá trị của chúng bằng nhau)
+) (x - 5)4 = (x - 5)6 = 0
=> (x - 5)4 = 0
=> (x - 5)4 = 04
=> x - 5 = 0 => x = 0 + 5 = 5
+) (x - 5)4 = (x- 5)6 = 1
=> (x - 5)4 = 1
=> (x - 5)4 = 14
=> x - 5 = 1
=> x = 1 + 5
=> x = 6
Bài 4 :
a3 . a9 = a3 + 9 = a12
(a5)7.(a6)4 .a12 = a35 . a24 . a12 = a35 + 24 + 12 = a71
4.52 - 2.32 = 4.25 - 2.9
= 100 - 18
= 82
\(a,A=2^1+2^2+2^3+...+2^{2019}\)
\(2A=2^2+2^3+2^4+...+2^{2020}\)
\(\Rightarrow2A-A=A=2^{2020}-2\)
\(B=1+3+3^2+3^3+...+3^{2020}\)
\(3B=3+3^2+3^3+...+3^{2021}\)
\(3B-B=2B=3^{2021}-1\)
\(B=\frac{3^{2021}-1}{2}\)
a,\(A=2^1+2^2+2^3+...+2^{2019}\)
\(2A=2^2+2^3+2^4+...+2^{2020}\)
\(2A-A=\left[2^2+2^3+2^4+...+2^{2020}\right]-\left[2^1+2^2+...+2^{2019}\right]\)
\(A=2^{2020}-2^1=2^{2020}-2\)
b, \(B=1+3+3^2+3^3+...+3^{2020}\)
\(3B=3+3^2+3^3+...+3^{2021}\)
\(3B-B=\left[3+3^2+3^3+...+3^{2021}\right]-\left[1+3+3^2+...+3^{2020}\right]\)
\(2B=3^{2021}-1\)
\(B=\frac{3^{2021}-1}{2}\)
a) 23 . 22 . 24 = 2 3+2+4 = 29
b) 102 . 103 . 105 = 102+3+5 = 1010
c) x . x5 = x1 . x 5 = x1+5 = x6
d) a3 . a2 . a5 = a3+2+5 = a 10
a) 23.22.24 = 29
b) 102.103.105 = 1010
c) x.x5 = x6
d) a3.a2.a5 = a10
a) 76 + 75 - 74=74.72+75.7-74.1 =74.(72+7-1)=74.55
vì 55 chia hết cho 11 nên 74.55 cũng chia hết cho 11
=> 76 + 75 - 74 chia hết cho 11
b)278 - 321=(33)8-321=324-321=321.33-321.1=321.(33-1)=321.26
=>278 - 321 chia het cho 26
c) 812 - 2 33 - 230
=(23)12-233-230=236-233-230=230.26-230.23-230.1=230.(26-23-1)
=230.55
=> 812 - 2 33 - 230 chia het cho 55
a) 76 + 75 - 74 = 74.(72 + 7 -1) = 74.5.11
Vậy chia hết cho 11
CHO A= 3+3MU2+3mu3+3mu4+...+3mu2017 a) tim so tu nhien N biet 2A +3 = 3n b)tim chu so tan cung cua A