Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) đề x3+x2-x +a chia hét cho (x-1)2 ?
x3+x2-x +a=x(x2-2x+1)+3(x2-2x+1)+4x-3+a đề sai nhé
b)A(2)=0=> 8-12+10+m=0 => m=6
c)2n2-n+2=2n(n+1)-3(n+1) +5 chia het cho n+1 khi n+1 là ước của 5
n+1=-1;1;-5;5
n=-2;0;-6;4
A ( x ) = x3 - 3x2 + 5x + m
= x3 - 2x2 - x2 + 2x + 3x + m
= x2 ( x - 2 ) - x ( x - 2 ) + ( 3x + m )
= ( x - 2 ) ( x2 - x ) + ( 3x + m )
Vì A chia hết cho x - 2
=> ( x - 2 ) ( x2 - x ) + ( 3x + m ) chia hết cho x - 2
mà ( x - 2 ) ( x2 - x ) chi hết cho x - 2
=> 3x + m chia hết cho x - 2
mà 3 ( x - 2 ) chia hết cho x - 2
= 3x - 6 chia hết cho x - 2
=> m = - 6
Vậy với m = - 6 thì A ( x ) = x3 - 3x2 + 5x + m chia hết cho B ( x ) = x - 2
2 là nghiệm của đa thức B(x)=x-2
Để đa thức A(x)=x3-3x2+5x+m chia hết cho đa thức B(x)=x-2 thì 2 cũng là nghiệm của đa thức A(x)=x3-3x2+5x+m
\(\Rightarrow A\left(2\right)=8-12+10+m=0\)
\(\Leftrightarrow6+m=0\Leftrightarrow m=-6\)
Vậy m = -6 thì đa thức A(x)=x3-3x2+5x+m chia hết cho đa thức B(x)=x-2
thực hiện phép chia hai đa thức ta có:
(x3 - 3x2 + 5x + m ) : (x - 2) = x2 - x + 3 (dư m + 6)
Đa thức A(x) chia hết cho đa thức B(x) khi: m + 6 = 0 => m = - 6
Vậy m = - 6
Lời giải:
Áp dụng định lý Bezout về phép chia đa thức:
Số dư của $A(x)$ khi chia cho $x-2$ là \(A(2)\)
Để \(A(x)\) chia hết cho $x-2$ thì $A(2)=0$
\(\Leftrightarrow A(2)=6+m=0\Leftrightarrow m=-6\)
\(\Leftrightarrow2x^3+6x^2-x^2-3x+6x+18+m-13⋮x+3\)
hay m=13
\(\dfrac{A}{B}=\dfrac{x^3-2x^2-x^2+2x+3x-6+2a+6}{x-2}\)
\(=x^2-x+3+\dfrac{2a+6}{x-2}\)
Để A chia hết cho B thì 2a+6=0
=>a=-3