Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Tìm \(\Delta\)để tìm điều kiện cho phương trình có 2 nghiệm
-Tìm tích \(x_1_{ }x_2=\frac{c}{a}\)để tìm đk cho 2 nghiệm khác 0
- Tìm tổng và tích 2 nghiệm theo định lí Vi-ét
- \(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{5}{2}=0\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=\frac{-5}{2}\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{-5}{2}\)
\(\Leftrightarrow\frac{\left(x1+x2\right)^2}{x1x2}=\frac{-1}{2}\)
Thay tích với tổng vào để tính nhé.Mình bận chỉ hướng dẫn ý chính. Có gì sai sót bỏ qua cho
lo hbfbekef evef
frgrgthtgr
t
gr
grgrgrgfrgrf
r
g
rg
r
g
r
gr
f
r
r
br
g
r
gr
gr
grg
r
g
eh
h
h
t
tt
t
t
thr
htr
htht
rh
ththt
ht
ht
h
h
ht
ht
ht
h
frorgew
rnngerjn griigrnbkrtgnngnrrkvggmbemfeegnv4f
v
r
re
eb
tg
bet
eb
b, \(\Delta'=b'^2-ac=\left[-\left(m-1\right)\right]^2-1.\left(-m-3\right)=m^2-2m+1+m+3\)
\(=m^2-m+4=m^2-m+\frac{1}{4}+\frac{15}{4}=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\)
Vậy pt (1) có 2 nghiệm x1,x2 với mọi m
Theo hệ thức vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\left(2\right)\\x_1x_2=-m-3\left(3\right)\end{cases}}\)
Ta có: \(x_1^2+x_2^2=10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\)
<=>\(4\left(m-1\right)^2-2\left(-m-3\right)=10\)
<=>\(4m^2-8m+4+2m+6=10\)
<=>\(4m^2-6m+10=10\Leftrightarrow2m\left(2m-3\right)=0\)
<=>\(\orbr{\begin{cases}m=0\\m=\frac{3}{2}\end{cases}}\)
c, Từ (2) => \(m=\frac{x_1+x_2+2}{2}\)
Thay m vào (3) ta có: \(x_1x_2=\frac{-x_1-x_2-2}{2}-3=\frac{-x_1-x_2-8}{2}\)
<=>\(2x_1x_2+x_1+x_2=-8\)
Δ = b2 - 4ac = [ -2( m + 1 ) ]2 - 16m
= 4( m2 + 2m + 1 ) - 16m
= 4m2 + 8m + 4 - 16m = 4m2 - 8m + 4
= 4( m2 - 2m + 1 ) = 4( m - 1 )2 ≥ 0 ∀ m
=> (1) luôn có nghiệm với mọi m
Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m+2\\x_1x_2=\frac{c}{a}=4m\end{cases}}\)
a) Để (1) có hai nghiệm đối nhau thì \(\hept{\begin{cases}x_1+x_2=0\\x_1x_2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}2m+2=0\\4m< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m=-1\\m< 0\end{cases}}\Leftrightarrow m=-1\left(tm\right)\)
b) \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=4\left(ĐKXĐ:x_1,x_2\ne0\right)\)
\(\Leftrightarrow\frac{x_1^2}{x_1x_2}+\frac{x_2^2}{x_1x_2}=4\)
\(\Rightarrow x_1^2+x_2^2=4x_1x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=0\)
\(\Leftrightarrow4m^2+8m+4-24m=0\)
\(\Leftrightarrow m^2-4m+1=0\)
Đến đây bạn dùng công thức nghiệm rồi tính nốt nhé :)
Không ai làm
vì đề bài quá dài.
Bạn nên chí nhỏ ra nhé
sẽ có nhiều người giúp...