K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2017

Bài 2)

Ta có \(\frac{a}{b}< \frac{c}{d}\)

\(\Rightarrow ad< bc\)

Xét \(\frac{a}{b}< \frac{a+c}{b+d}\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow ab+ad< ab+bc\)

\(\Rightarrow ad< bc\) ( thỏa mãn đề bài )

Vậy \(\frac{a}{b}< \frac{a+c}{b+d}\) (1)

Xét \(\frac{a+c}{b+d}< \frac{c}{d}\)

\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow ad+cd< bc+cd\)

\(\Rightarrow ad< bc\) ( thỏa mãn đề bài )

Vậy \(\frac{a+c}{b+d}< \frac{c}{d}\) (2)

Từ (1) (2)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\) (đpcm)

10 tháng 1 2017

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}{2013+\frac{2013}{2}+\frac{2012}{3}+...+\frac{1}{2014}}\)

Đặt \(B=2013+\frac{2013}{2}+\frac{2012}{3}+...+\frac{1}{2014}\)

\(=\left(2013-2013\right)\left(\frac{2013}{2}+1\right)+...+\left(\frac{1}{2014}+1\right)\)

\(=0+\frac{2015}{2}+\frac{2015}{3}+...+\frac{2015}{2014}\)

\(=2015\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)\)

Thay B vào A ta được:

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}{2015\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}\)

\(=\frac{1}{2015}\)

Vậy \(A=\frac{1}{2015}\)

15 tháng 9 2019

anh tốt ghê đăng lên giúp em đấy

anh đăng lên nhờ người giúp nhưng ko có ai ☹️ ☹️ ☹️

10 tháng 11 2016

\(D=\frac{\frac{2013}{2}+\frac{2013}{3}+\frac{2013}{4}+...+\frac{2013}{2014}}{\frac{2013}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)

\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}{\left(\frac{2012}{2}+1\right)+\left(\frac{2011}{3}+1\right)+...+\left(\frac{1}{2013}+1\right)+1}\)

\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}{\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}+\frac{2014}{2014}}\)

\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}{2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}\)

\(=\frac{2013}{2014}\)

12 tháng 2 2017

2013/2014

6 tháng 7 2018

a, ĐK: \(x+1\ge0\Leftrightarrow x\ge-1\)

Ta có: |3-2x|=x+1

=>\(\orbr{\begin{cases}3-2x=x+1\\3-2x=-x-1\end{cases}\Rightarrow\orbr{\begin{cases}x+2x=3-1\\-x+2x=3+1\end{cases}\Rightarrow}\orbr{\begin{cases}3x=2\\x=4\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{2}{3}\left(tmđk\right)\\x=4\left(tmđk\right)\end{cases}}}\)

Vậy x=2/3 hoặc x=4

b, Xét VP ta có: \(\frac{2013}{1}+\frac{2012}{2}+...+\frac{2}{2012}+\frac{1}{2013}=2013+\frac{2012}{2}+...+\frac{2}{2012}+\frac{1}{2013}\)

\(=1+\left(1+\frac{2012}{2}\right)+\left(1+\frac{2011}{3}\right)+...+\left(1+\frac{2}{2012}\right)+\left(1+\frac{1}{2013}\right)\)

\(=\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2012}+\frac{2014}{2013}+1\)

\(=\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}+\frac{2014}{2014}=2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)\)

=>\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)x=2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)\)

=>\(x=\frac{2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}=2014\)

Vậy x=2014

13 tháng 3 2019

\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{97\cdot99}-\frac{5}{4}\cdot\frac{13}{99}+\frac{5}{99}\cdot\frac{1}{4}\)

\(A=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\right)-\frac{13}{4}\cdot\frac{5}{99}+\frac{5}{99}\cdot\frac{1}{4}\)

\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)-\frac{5}{99}\cdot\left(\frac{13}{4}-\frac{1}{4}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{99}\right)-\frac{5}{99}\cdot3\)

\(A=\frac{1}{2}\cdot\frac{32}{99}-\frac{5}{33}\)

\(A=\frac{16}{99}-\frac{5}{33}=\frac{1}{99}\)

13 tháng 3 2019

3/\(7a+b=0\Rightarrow b=-7a\)

\(f\left(x\right)=ax^2-7ax+c\).Ta có: \(f\left(10\right)=100a-70a+c=30a+c\)

\(f\left(-3\right)=30a+c\).Nhân theo vế ta có đpcm:

\(f\left(10\right).f\left(-3\right)=\left(30a+c\right)^2\ge0\) (đúng)

15 tháng 2 2017

\(\frac{B}{A}=\frac{\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}\)

\(=\frac{\left(\frac{2011}{2}+1\right)+\left(\frac{2010}{3}+1\right)+...+\left(\frac{1}{2012}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}\)

\(=\frac{\frac{2013}{2}+\frac{2013}{3}+\frac{2013}{4}+....+\frac{2013}{2012}+\frac{2013}{2013}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2013}}\)

\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2013}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}=2013\)