Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2\)
\(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)\)
b) sửa đề nhé!
\(6x-9-x^2=-\left(x^2-6x+9\right)\)
\(=-\left(x-3\right)^2\)
\(a,=\left(4x^2\right)^2\left(x-y\right)-\left(x-y\right)\)
\(=\left[\left(4x^2\right)^2-1^2\right]\left(x-y\right)\)
\(=\left(4x^2+1\right)\left(4x^2-1\right)\left(x-y\right)\)
\(=\left(4x^2+1\right)\left(2x+1\right)\left(2x-1\right)\left(x-y\right)\)
1) x2 - x - y2 - y = (x - y)(x + y) - (x + y) = (x - y - 1)(x + y)
2. x2 - 2xy + y2 - z2 = (x - y)2 - z2 = (x - y - z)(x - y + z)
3. 5x - 5y + ax - ay = 5(x - y) + a(x - y) = (a + 5)(x - y)
4. a3 - a2x - ay + xy = a2(a - x) - y(a - x) = (a2 - y)(a - x)
5. 4x2 - y2 + 4x + 1 = (2x + 1)2 - y2 = (2x + 1 - y)(2x + y + 1)
6. x3 - x + y3 - y = (x + y)(x2 - xy + y2) - (x + y) = (x + y)(x2 - xy + y2 - 1)
Trả lời:
1, x2 - x - y2 - y
= ( x2 - y2 ) - ( x + y )
= ( x - y ) ( x + y ) - ( x + y )
= ( x + y ) ( x - y - 1 )
2, x2 - 2xy + y2 - z2
= ( x2 - 2xy + y2 ) - z2
= ( x - y )2 - x2
= ( x - y - z ) ( x - y + z )
3, 5x - 5y + ax - ay
= ( 5x + ax ) - ( 5y + ay )
= x ( 5 + a ) - y ( 5 + a )
= ( 5 + a ) ( x - y )
= ( 5 + a ) ( x - y )
4, a3 - a2x - ay + xy
= ( a3 - a2x ) - ( ay - xy )
= a2 ( a - x ) - y ( a - x )
= ( a - x ) ( a2 - y )
5, 4x2 - y2 + 4x + 1
= ( 4x2 + 4x + 1 ) - y2
= ( 2x + 1 )2 - y2
= ( 2x + 1 - y ) ( 2x + 1 + y )
6, x3 - x + y3 - y
= ( x3 + y3 ) - ( x + y )
= ( x + y ) ( x2 - xy + y ) - ( x + y )
= ( x + y ) ( x2 - xy + y - 1 )
a) \(3x^2-3xy-5x+5y\)
\(=\left(3x^2-3xy\right)-\left(5x-5y\right)\)
\(=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x-5\right)\)
b) \(2x^3y-2xy^3-4xy^2-2xy\)
\(=2xy\left(x^2-y^2-2y-1\right)\)
\(=2xy\left[x^2-\left(y^2+2y+1\right)\right]\)
\(=2xy\left[x^2-\left(y+1\right)^2\right]\)
\(=2xy\left(x-y-1\right)\left(x+y+1\right)\)
c) \(x^2+1+2x-y^2\)
\(=\left(x^2+2x+1\right)-y^2\)
\(=\left(x+1\right)^2-y^2\)
\(=\left(x+1+y\right)\left(x+1-y\right)\)
d) \(x^2+4x-2xy-4y+y^2\)
\(=\left(x^2-2xy+y^2\right)+\left(4x-4y\right)\)
\(=\left(x-y\right)^2+4\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y+4\right)\)
e) \(x^3-2x^2+x\)
\(=x\left(x^2-2x+1\right)\)
\(=x\left(x-1\right)^2\)
f) \(2x^2+4x+2-2y^2\)
\(=2\left(x^2+2x+1-y^2\right)\)
\(=2\left[\left(x^2+2x+1\right)+y^2\right]\)
\(=2\left[\left(x+1\right)^2-y^2\right]\)
\(=2\left(x-y+1\right)\left(x+y+1\right)\)
a: =3x(x-y)-5(x-y)
=(x-y)(3x-5)
b: \(=2xy\left(x^2-y^2-2y-1\right)\)
\(=2xy\left[x^2-\left(y^2+2y+1\right)\right]\)
\(=2xy\left(x-y-1\right)\left(x+y+1\right)\)
d:
Sửa đề: x^2+4x-2xy-4y+y^2
=x^2-2xy+y^2+4x-4y
=(x-y)^2+4(x-y)
=(x-y)(x-y+4)
e: =x(x^2-2x+1)
=x(x-1)^2
f: =2(x^2+2x+1-y^2)
=2[(x+1)^2-y^2]
=2(x+1+y)(x+1-y)
a) \(x-xy+y-y^2=x\left(1-y\right)+y\left(1-y\right)=\left(x+y\right)\left(1-y\right)\)
b) \(x^2-2x-y^2+1=\left(x^2-2x+1\right)-y^2=\left(x-1\right)^2-y^2=\left(x-y-1\right)\left(x+y-1\right)\)
c) \(4x^2-4xy+y^2=\left(2x\right)^2-2.2x.y+y^2=\left(2x-y\right)^2\)
d) \(9x^3-9x^2y-4x+4y=9x^2\left(x-y\right)-4\left(x-y\right)=\left(9x^2-4\right)\left(x-y\right)=\left(3x-2\right)\left(3x+2\right)\left(x-y\right)\)
e) \(x^3+2+3\left(x^3-2\right)=x^3+2+3x^3-6=4x^3-4=4\left(x^3-1\right)=4\left(x-1\right)\left(x^2+x+1\right)\)
a) x^2 - 5xy +4y^2= x^2 -xy -4xy+4y^2= (x^2-xy) - (4xy - 4y^2)= x(x-y)-4y(x-y)=(x-y)*(x - 4y)
b) x^2 -y^4+9y -x(9+y-y^3= x^2-y^4 +9y-9x-xy+xy^3= (x^2-xy)-(9x-9y)+(xy^3-y^4)=x(x-y)-9(x-y)+y^3(x-y)=(x-y)*(y^3+x-9)
d) 2u^2+2v^2-5uv=(2u^2-4uv)+(2v^2-uv)=2u(u-2v)+v(2v-u)= 2u(u-2v)-v(u-2v)=(u-2v)*(2u-v)
1) \(x^2+4y^2+4xy\)
\(=\left(x+2y\right)^2\)
2 ) \(\left(x-y\right)^2-\left(x-y\right)^2=\left[\left(x+y\right)-\left(x-y\right)\right]\)
\(\Leftrightarrow\left(x-y-x+y\right)\left(x-y+x-y\right)=x+y-x+y\)
\(\Leftrightarrow2x-2y=2y\)
\(\Leftrightarrow2x+2y-2y=0\Leftrightarrow2\left(x+y-y\right)=0\Leftrightarrow2x=0\Leftrightarrow x=0\) :v
3 ) \(\left(4x+3\right)^2-\left(2x-1\right)^2\)
\(=\left(4x+3-2x+1\right)\left(4x+3+2x-1\right)\)
\(=\left(2x+4\right)\left(6x+2\right)\)
4 ) \(x^3+y^3+z^3-3xy\) ( thiếu đề sao á )
5 ) \(x^3-2xy+y^2-z^2\)
\(=x\left(x^2-2y\right)+\left(y-z\right)\left(y+z\right)\)
1) \(x^2+4y^2+4xy=x^2+\left(2y\right)^2+2.x.2y=\left(x+2y\right)^2\)
2) wtf?
3) \(\left(4x+3\right)^2-\left(2x-1\right)^2=\left(4x+3-2x+1\right)\left(4x+3+2x-1\right)\)
\(=\left(2x+4\right)\left(6x+2\right)\)
4) \(x^3+y^3+z^3-3xyz\)
\(=x^3+3x^2y+3xy^2+y^3+z^3-3x^2y-3xy^2-3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)