Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3 số tự nhiên liên tiếp la x;x+1;x+2
Giả sử x chia hết cho 3 thì => ĐPCM
Giả sử x không chia hết cho 3 tức là x chia 3 dư 1 hoặc 2. Vậy x+1 hoặc x+2 sẽ chia hết cho 3; khi đó 2 số tự nhiên liên tiếp còn lại sẽ có 1 trong 2 số chia hết cho 3.
Gọi 2 số chẵn lên tiếp là 2k và 2k + 2(k thuộc N).
Vì đây là 2 số chẵn nên nó không thể chia 4 dư 1 hoặc 3. Vậy 2 số này chỉ xảy ra 2 trường hợp là chia hết hoặc dư 2.
Nếu 2k chia hết cho 4 thì đã chứng minh được có 1 số chia hết cho 4 rồi. (1)
Nếu 2k chia 4 dư 2 thì 2k + 2 chia hết cho 4. (2)
Từ (1) và (2), ta có 2 số chẵn liên tiếp có 1 và chỉ có 1 số chia hết cho 4
Tick cho mình nha
a)Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
b)
Hai số chẵn liên tiếp có dạng 2a và 2a+2.Ta có
2ax(2a+2)=4ax(a+1)chia hết cho 4.Suy ra 2a hoặc 2a+2 phải chia hết cho 4 mặt khác 2a+2a+2 = 4a+2 ko chia hết cho 4.
.Vậy nếu 2a chia hết cho 4 thì 2a+2 ko chia hết cho 4 ngược lai nếu 2a+2 chia hết cho 4 thì 2a ko chia hết cho 4.
Vậy trong 2 số chẵn liên tiếp chỉ có 1 số chia hết cho 4.
a)
gọi 3 STN liên tiếp là a ;a+1;a+2
=>a+a+1+a+2=a+a+a+1+2=3a+3=3(a+1) chia hết cho 3
=> .. có
b)
gọi 4 STN liên tiếp là a;a+1;a+2;a+3
=>a+a+1+a+2+a+3=a+a+a+a+6=4a+6
=> ko chia hết cho 4
a) Ta có: 2 STN liên tiếp là: B(2) + 1 và B( 2) + 2 ( vì B(2) thay thế cho 0 )
Vì B(2) chia hết cho 2 và 2 chia hết cho 2
=> B(2) + 2 chia hết cho 2
b) Ta có: 3 STN liên tiếp là: B(3) + 1; B(3) + 2; B(3) + 3 ( vì B(3) thay thế cho 0 )
Vì B(3) chi hết cho 3 và 3 chia hết cho 3
=> B(3) + 3 chia hết cho 3
^_^ Vũ Dương Bách
a,vì trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn mà số chẵn thì chia hết cho 2
mk chỉ biết vậy thôi
a) Ta có : 2 số tự nhiên liên tiếp là : 2k và 2k + 1 trong đó 2k chia hết cho 2
b) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2 trong đó 3k chia hết cho 3
c) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2
3k + 3k + 1 + 3k + 2 = ( 3k + 3k + 3k ) + ( 2 + 1 ) = 9k + 3
\(\hept{\begin{cases}9k⋮3\\3⋮3\end{cases}\Rightarrow\left(9k+3\right)⋮3}\)
d) Tương tự
A, CÓ
B,KHÔNG
C,GOI BA SO TU NHIEN LIEN TIEP LA A,A+1, A+2,
(a+a+a)+ (1+2)
3a+3 chia hết cho 3
vi 3chia hết cho 3
vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
gọi 4 số tự nhiên liên tiếp là a,á+1,a+2,a+3
(a+a+a+a)+(1+2+3)
4a+6 không chia hết cho 3 vì 4 không chia hết cho 3
vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 3
Gọi 3 STN liên tiếp là : a,a+1,a=2(a thuộc N )
Khi chia a cho 3 thì a sẽ có dạng 3k,3k+1,3k+2(k thuộc N )
+ Nếu a=3k thì a : 3 ( thay : cho chia hết )
a+1 :/ 3 ( thay :/ cho ko chia hết )
a+2:/3
+Nếu a=3k+1 thì a:/ 3
a+1 =3k+1+1=3k+2 :/ 3
a+2=3k+2+1= 3k+3:3
+ Nếu a=3k+2 thì a:/3
a=3k+1=3k+1+2=3k+3:3
a=3k+2=3k+2+2=3k+a:/3
Vậy ...................................
Nhớ câu kia cũng tương tự vậy mà làm