Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(129-10=119⋮b\)
\(61-10=51⋮b\)
=> b là ước chung của 119 và 51 => b=17
b/
Số dư lớn nhất cho 1 phép chia kém số chia 1 đơn vị
Số dư trong phép chia này là
14-1=13
\(\Rightarrow a=14.5+13=83\)
a) gọi số chia cần tìm là b ( b > 10)
Gọi q1 là thương của phép chia 129 cho b
Vì 129 chia cho b dư 10 nên ta có:129 = b.q1 + 10 ⇒ b.q1 =119 = 119.1 =17.7
Gọi q2 là thương của phép chia 61 chia cho cho b
Do chia 61 cho b dư 10 nên ta có 61 = b.q2 +10⇒ b.q2 = 51 = 1.51 = 17.3
Vì b < 10 và q1 ≠ q2 nên ta dược b = 17
Vậy số chia thỏa mãn bài toán là 17.
Gọi số chia là a, thương là b
Theo bài ra, ta có:
\(ab+12=145\) \(b\ne1\) \(a;b\in N\)
\(\Leftrightarrow ab=145-12\)
\(\Leftrightarrow ab=133\)
Ta lại có: \(133=1.133=19.7\)
\(\Leftrightarrow ab=1.133=19.7\)
Xét \(ab=1.133\)
Vì \(b\ne1\) \(\Leftrightarrow a=1\) ; \(b=133\)
Thay vào phép chia, ta có:
\(145:1=133\) ( dư \(12\)) [ Vô lý]
Xét \(ab=19.7\)
* Giả sử \(a=19\) ; \(b=7\)
Thay vào phép chia, ta có:
\(145:19=7\)(dư 12 ) [ Đúng]
* Giả sử \(a=7\) ; \(b=19\)
Thay vào phép chia, ta có:
\(145:7=19\) ( dư 12) [ Vô lý]
Vì số chia bao giờ cũng lớn hơn số dư. Mà \(7< 12\)
\(\Leftrightarrow\hept{\begin{cases}a=19\\b=7\end{cases}}\) thì thỏa mãn bài toán
Vậy số chia bằng \(19\) và thương bằng \(7\) thì thỏa mãn điều kiện bài toán.
Chúc bạn học tốt ^^
1) Gọi thương của phép chia a chia cho 54 là q
Ta có a: 54 = q (dư 38) => a = 54q + 38
=> a = 18.3q + 18.2 + 2 = 18.(3q + 2) + 2
=> a chia cho 18 được thương là 3q + 2; dư 2
Theo bài cho 3q + 2 = 14 => 3q = 12 => q = 4
Vậy a = 54.4 + 38 = 254
2) Gọi số bị trừ là a; số trừ là b
a tận cùng là 3; Khi bỏ đi chữ số 3 ta được số b => a - 3 = 10b => a = 10b + 3
Theo bài cho: a - b = 57 => (10b + 3) - b = 57 => 10b - b = 57 - 3 => 9b = 54 => b = 6 => a = 6.10 + 3 = 63
Vậy hai số đó là 63; 6
Gọi a là số tự nhiên cần tìm
a = 60.q + 31
a = 12.17 + r ( 0 ≤ r ≤ 12 )
Ta lại có 60.q chi hết cho 12 và 31 chia 12 dư 7
Vậy r = 7
Vậy a = 12.17 + 7 = 211
Gọi số cần tìm là a.
Theo bài ra ta có:
a = 60 . q + 31
a = 12 . 17 + r ( 0 \(\le\)r \(< \)12 )
Ta lại có : 60 . q \(⋮\)12 và 31 : 12 ( dư 17 )
\(\Rightarrow\)r = 7
Vậy a = 12 . 17 + 7 = 211
Kiến thức cần nhớ về phép chia có dư:
+ Số chia lớn hơn số dư
+ Số bị chia = Số chia nhân thương cộng với số dư
+ Số dư lớn nhất kém số chia 1 đơn vị
+ Số bị chia bớt đi số dư thì phép chia trở thành phép chia hết
Giải
Tổng của số số chia và số bị chia là: 595 - 49 = 546
Gọi số chia là \(x\) (\(x\in\) N; \(x\) ≥ 50)
Thì khi đó số bị chia là: 6\(\times\) \(x\) + 49 = 6\(x\) + 49
Theo bài ra ta có: 6\(x\) + 49 + \(x\) = 546
7\(x\) = 546 - 49
7\(x\) = 497
\(x\) = 497 : 7
\(x\) = 71
Số bị chia là 71 \(\times\) 6 + 49 = 475
Kết luận: Số chia là 71; số bị chia là 475
Thử lại ta có: 71 + 475 + 49 = 595 (ok)
475 : 71 = 6 dư 49 (ok)
b, Gọi số chia là \(x\) ( \(x\in\) N*; \(x>13\)) Thì thương là:
\(\dfrac{200-13}{x}\)=\(\dfrac{187}{x}\)⇒\(x\)\(\in\)Ư(187) ={ 1; 11; 17;187} vì \(x\)> 13⇒ \(x\) = 17;
Số chia là 17; thương là: 187 : 17 = 11
Số chia là 187 thương là: 187 : 187 = 1
Kết luận: Số chia là 17; thương là 11 hoặc số chia là 187 thương là 1
b, Đề cho số dư là số lớn nhất có thể không em?
để số bị chia nhỏ nhất thì số chia cũng phải là số nhỏ nhất có thể . số dư là 49 thì số chia muốn nhỏ nhất thì ta lấy : 49 + 1 = 50 . số bị chia là : 42 x 50 + 49 = 2149
Gọi số cần tìm là \(x\) ( \(x\in\)N; 100 ≤ \(x\) ≤ 999)
Theo bài ra ta có \(x\) có dạng: \(x\) = 75k + k ( k \(\in\) N)
⇒ \(x\) = 76k ⇒ k = \(x:76\) ⇒ \(\dfrac{100}{76}\) ≤ k ≤ \(\dfrac{999}{76}\)
⇒ k \(\in\) { 2; 3; 4;...;13}
Để \(x\) lớn nhất thì k phải lớn nhất ⇒ k = 13 ⇒ \(x\) = 76 \(\times\) 13 = 988
Vậy số thỏa mãn đề bài là 988
Thử lại ta có 988 : 75 = 13 dư 13 (ok)
b, Gọi số chia là \(x\) ( \(x\) \(\in\) N; \(x\) > 9)
Theo bài ra ta có: 86 - 9 ⋮ \(x\) ⇒ 77 ⋮ \(x\)
⇒ \(x\) \(\in\) Ư(77) = { 1; 7; 11}
vì \(x\) > 9 ⇒ \(x\) = 11
Vậy số chia là 11
Thương là: (86 - 9 ) : 11 = 7
Kết luận số chia là 11; thương là 7
Thử lại ta có: 86 : 11 = 7 dư 9 (ok)