Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2√48−3√75+5√3248−375+53
=2√16.3−3√25.3+5√3=216.3−325.3+53
=2√42.3−3√52.3+5√3=242.3−352.3+53
=2.4√3−3.5√3+5√3=2.43−3.53+53
=8√3−15√3+5√3=83−153+53
=(8−15+5).√3=(8−15+5).3
=−2√3
a: \(\Leftrightarrow\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)
\(a,=\left(2\sqrt{6}-4\sqrt{3}\right)\sqrt{6}+12\sqrt{2}=12-12\sqrt{2}+12\sqrt{2}=12\\ b,=\dfrac{6\left(3-\sqrt{3}\right)}{6}+\sqrt{3}=3-\sqrt{3}+\sqrt{3}=3\)
\(=\sqrt{8}\cdot\sqrt{8}-\sqrt[3]{\dfrac{16}{2}}=8-\sqrt[3]{8}=8-2=6\)
\(M=6\sqrt{2x}-\sqrt{2x}+2\sqrt{2x}-4\sqrt{2x}=3\sqrt{2x}\)
1)
\(=\sqrt{\left(\sqrt{11}\right)^2-2.\sqrt{11}.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(\sqrt{11}-\sqrt{3}\right)^2}=\sqrt{11}-\sqrt{3}\)
2)
\(=\sqrt{\left(\sqrt{7}\right)^2-2.\sqrt{7}\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}=\sqrt{7}-\sqrt{5}\)
3)
\(=\sqrt{\left(\sqrt{11}\right)^2-2.\sqrt{11}\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(\sqrt{11}-\sqrt{5}\right)}=\sqrt{11}-\sqrt{5}\)
4)
\(=\sqrt{3^2-2.3.\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(3-\sqrt{5}\right)^2}=3-\sqrt{5}\)
5)
\(=\sqrt{3^2-2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2}=\sqrt{\left(3-2\sqrt{2}\right)^2}=3-2\sqrt{2}\)
Để A>-2 thì \(-x+\sqrt{x}+2>0\)
\(\Leftrightarrow x-\sqrt{x}-2>0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)>0\)
=>\(\sqrt{x}-2>0\)
=>x>4
mk cảm ơn nhìuuuuu nha