Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{6:\dfrac{3}{5}-\dfrac{17}{16}.\dfrac{6}{7}}{\dfrac{21}{5}.\dfrac{10}{11}+\dfrac{57}{11}}-\dfrac{\left(\dfrac{3}{20}+\dfrac{1}{2}-\dfrac{1}{15}\right).\dfrac{12}{49}}{\dfrac{10}{3}+\dfrac{2}{9}}\right).x=\dfrac{215}{96}\)
\(\Rightarrow\left(\dfrac{\dfrac{509}{56}}{9}-\dfrac{\dfrac{7}{12}.\dfrac{12}{49}}{\dfrac{32}{9}}\right).x=\dfrac{215}{96}\)
\(\Rightarrow\left(\dfrac{509}{504}-\dfrac{\dfrac{1}{7}}{\dfrac{32}{9}}\right).x=\dfrac{215}{96}\)
\(\Rightarrow\left(\dfrac{509}{504}-\dfrac{9}{224}\right).x=\dfrac{215}{96}\)
\(\Rightarrow\dfrac{1955}{2016}.x=\dfrac{215}{96}\)
\(\Rightarrow x=\dfrac{215}{96}:\dfrac{1955}{2016}\)
\(\Rightarrow x=\dfrac{903}{391}\)
`[ 6 : 3/5 - 17/16 . 6/7 : 21/5 . 10/11 + 57/11 - (3/20 + 1/2 - 1/15) . 12/49 : 10/3 + 2/9 ] . x = 215/96`
`=>[ 6 . 5/3 - 17/16 . 6/7 . 5/21 . 10/11 + 57/11 - (3/20 + 1/2 - 1/15) . 12/49 . 3/10 + 2/9 ] . x = 215/96`
`=>[10- 51/56 . 6/7 . 5/21 . 10/11 + 57/11 - (3/20 + 1/2 - 1/15) . 12/49 . 3/10 + 2/9 ] . x = 215/96`
`=> [10- 153/196 . 5/21 . 10/11 + 57/11 - (3/20 + 1/2 - 1/15) . 12/49 . 3/10 + 2/9 ] . x = 215/96`
`=> [10- 255/1372 . 10/11 + 57/11 - (3/20 + 1/2 - 1/15) . 12/49 . 3/10 + 2/9 ] . x = 215/96`
`=> [10- 1275/7546 + 57/11 - (3/20 + 1/2 - 1/15) . 12/49 . 3/10 + 2/9 ] . x = 215/96`
`=> (10- 1275/7546 + 57/11 - 7/12. 12/49 . 3/10 + 2/9 ) . x = 215/96`
`=> ( 10- 1275/7546 + 57/11 -343/600 . 3/10 + 2/9 ) . x = 215/96`
`=> ( 10- 1275/7546 + 57/11 -343/2000 + 2/9 ) . x = 215/96`
`=>15,06357671 . x= 215/96`
`=> x= 215/96: 15,06357671`
`=>x= 0,1486754027`
Đề có phải như vậy không nhỉ ?
(80 . x + 32) : 4 = 100 - 12
(80 . x + 32) : 4 = 88
80 . x + 32 = 88 . 4
80 . x + 32 = 352
80 . x = 352 - 32
80 . x = 320
x = 320 : 80
x = 4
=>4x-2+8 chia hết cho 2x-1
=>2x-1 thuộc {1;-1}
=>x thuộc {1;0}
Bài 1:
Vì ƯCLN $(a,b)=20$ nên $a\vdots 20; b\vdots 20$
$\Rightarrow a-b\vdots 20$ hay $48\vdots 20$ (vô lý)
Do đó không tồn tại $a,b$ thỏa mãn điều kiện đề bài.
Bài 2:
a) Đề sai. Bạn cho $n=3$ thì $5n+5=20, 3n+1=10$. Hai số này có ƯCLN là $10$ nên không nguyên tố cùng nhau.
b) Gọi ƯCLN của $2n-1$ và $9n+4$ là $d$. Khi đó:
\(\left\{\begin{matrix} 2n-1\vdots d\\ 9n+4\vdots d\end{matrix}\right.\Rightarrow \left\{\begin{matrix} 18n-9\vdots d\\ 18n+8\vdots d\end{matrix}\right.\)
\(\Rightarrow (18n+8)-(18n-9)\vdots d\) hay $17\vdots d$
$\Rightarrow d=1$ hoặc $17$
a) \(A=\dfrac{3}{5}+6\dfrac{5}{6}+\left(11\dfrac{5}{20}-9\dfrac{1}{4}\right):8\dfrac{1}{3}\)
\(=\dfrac{3}{5}+\dfrac{41}{6}\left(11\dfrac{1}{4}-9\dfrac{1}{4}\right):8\dfrac{1}{3}\)
\(=\dfrac{3}{5}+\dfrac{41}{6}.2.\dfrac{3}{25}\)
\(=\dfrac{3}{5}+\dfrac{41}{25}\)
\(=\dfrac{15}{25}+\dfrac{41}{25}\)
\(=\dfrac{56}{25}\)
a) A = \(\dfrac{3}{5}+6\dfrac{5}{6}\left(11\dfrac{5}{20}-9\dfrac{1}{4}\right):8\dfrac{1}{3}\)
A = \(\dfrac{3}{5}+\dfrac{41}{6}\) \(\left(\dfrac{45}{4}-\dfrac{37}{4}\right)\) : \(\dfrac{25}{3}\)
A = \(\dfrac{3}{5}+\dfrac{41}{6}\) . 2 : \(\dfrac{25}{3}\)
A = \(\dfrac{3}{5}\) + \(\dfrac{41}{3}\) : \(\dfrac{25}{3}\)
A = \(\dfrac{3}{5}\) + \(\dfrac{41}{25}\)
A = \(\dfrac{56}{25}\)
Bài1 tính nhanh
1+4+7+....+79
70×939+61×135-61×65
Bài 2 tìm x
1005² × 1005*= 1005 ngũ7
12×4+225:(x-3)²=57
Bài 1 :
1 + 4 + 7 + .......... + 79
Số các số hạng của dãy số trên là : ( 79 - 1 ) : 3 + 1 = 27 ( số )
Tổng các số hạng là : ( 79 + 1 ) . 27 : 2 = 1080
70 . 939 + 61 . 135 - 61 . 65
= 70 . 939 + 61 . ( 135 - 65 )
= 70 .939 + 61 . 70
= 70 . ( 939 + 61 )
= 70 . 1000 = 70000
\(\left(2600+6400\right)-3\cdot x=2000\)
\(9000-3x=2000\)
\(3x=9000-2000\)
\(3x=7000\)
\(x=7000:3\)
\(x=\frac{7000}{3}\)
\(4x+12=-20\)
\(\Rightarrow4x=-20-12\)
\(\Rightarrow4x=-32\)
\(\Rightarrow x=-32\div4\)
\(\Rightarrow x=-8\)
\(4x+12=-20\)
\(\Rightarrow4x=(-20)-12\)
\(\Rightarrow4\text{x}=-32\)
\(\Rightarrow\text{x}=-\frac{32}{4}\Rightarrow\text{x}=-8\)
Chúc bạn học tốt :>