Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3, Gọi ƯCLN(a,b) = d => a=a'.d hay a= 5.a'
b=b'.d b=5.b'
(a',b')=1 ( a'>b') (a',b') =1 9a'>b')
Mà a.b = ƯCLn(a,b) . BCNN(a,b)
a'.5.b'.5= 5.105
a'.5.b'.5= 5.21.5
=> a'.b'.25= 525
=> a'.b' = 525:25
=> a'.b'=21
Ta có bảng :
d | 5 | 5 |
a' | 7 | 21 |
b' | 3 | 1 |
a | 35 | 105 |
b | 15 | 5 |
Vậy ta có các cặp (a,b) : (35;150 và (105;5)
\(a;\frac{2n+5}{n+3}\)
Gọi \(d\inƯC\left(2n+5;n+3\right)\Rightarrow3n+5⋮d;n+3⋮d\)
\(\Rightarrow2n+5⋮d\)và \(2\left(n+3\right)⋮d\)
\(\Rightarrow\left[\left(2n+6\right)-\left(2n+5\right)\right]⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy \(\frac{2n+5}{n+3}\)là phân số tối giản
\(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)+5-6}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)
Với \(B\in Z\)để n là số nguyên
\(\Rightarrow1⋮n+3\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow n\in\left\{-2;-4\right\}\)
Vậy.....................
a, \(\frac{2n+5}{n+3}\)Đặt \(2n+5;n+3=d\left(d\inℕ^∗\right)\)
\(2n+5⋮d\) ; \(n+3⋮d\Rightarrow2n+6\)
Suy ra : \(2n+5-2n-6⋮d\Rightarrow-1⋮d\Rightarrow d=1\)
Vậy tta có đpcm
b, \(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=\frac{-1}{n+3}=\frac{1}{-n-3}\)
hay \(-n-3\inƯ\left\{1\right\}=\left\{\pm1\right\}\)
-n - 3 | 1 | -1 |
n | -4 | -2 |
Goi y
B1 X+3 chia het cho 5 7 9
B2 a ; Nhan x-1 vs 2 Roi tru cho nhau
b ; nhan x+1 vs 3
B3 nhan 3n +4 vs 4 ; 4n +5 vs3 roi tru
Bài 2:
Gọi số cần tìm là A
*2,3,4,5,6 có BCNN là 60
(A - 1) chia hết cho 2,3,4,5,6 nên A = 60a (a là số tự nhiên khác 0)
=> A = 60a + 1
*A chia hết cho 7 nên: A = 60a+1 = 7b
=> 7b = 56a + 4a + 1 = 7.8a + 4a + 1
=> b = 8a + (4a+1)/7
Vì b nguyên dương nên (4a+1) chia hết cho 7
A nhỏ nhất khi a nhỏ nhất thỏa (4a+1) chia hết cho 7
=> a = 5
=> A = 301
**Dạng chung:
Từ trên ta có 4a+1 = 7c = 8c - c
=> a = 2c - (c+1)/4
=> c+1 chia hết cho 4
=> c+1 = 4k
=> c = 4k-1
Thay trở lại ta có:
a = 2c - (c+1)/4 = 8k-2 - (4k-1+1)/4 = 8k-2 -k = 7k-2
A = 60a + 1 = 60(7k-2) + 1 = 420k - 119
Công thức chung là A = 420k - 119 với k nguyên dương
Rõ ràng k nhỏ nhất là 1 nên ứng với A = 301
Bài 1:
Vì \(ƯCLN\left(a,b\right)=16\Rightarrow\hept{\begin{cases}a=16.m\\b=16.n\end{cases};\left(m,n\right)=1;m,n\in N}\)
Thay a = 16.m, b = 16.n vào a+b = 128, ta có:
\(16.m+16.n=128\)
\(\Rightarrow16.\left(m+n\right)=128\)
\(\Rightarrow m+n=128\div16\)
\(\Rightarrow m+n=8\)
Vì m và n nguyên tố cùng nhau
\(\Rightarrow\) Ta có bảng giá trị:
Vậy các cặp (a,b) cần tìm là:
(16; 128); (128; 16); (48; 80); (80; 48).
Bài 2:
Gọi d là ƯCLN (2n+1, 2n+3), d \(\in\) N*
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\)
\(\Rightarrow\left(2n+3\right)-\left(2n+1\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Vì 2n+3 và 2n+1 không chia hết cho 2
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+1,2n+3\right)=1\)
\(\Rightarrow\) 2n+1 và 2n+3 là hai số nguyên tố cùng nhau.
cam on ban nhieu lam cuu tinh